Plasmon resonance represents the collective oscillation of free electron gas density and enables enhanced light-matter interactions in nanoscale dimensions. Traditionally, the classical Drude model describes plasmonic excitation, wherein plasma frequency exhibits no spatial dispersion. Here, we show conclusive experimental evidence of the breakdown of plasmon resonance and a consequent metal-insulator transition in an ultrathin refractory plasmonic material, hafnium nitride (HfN).
View Article and Find Full Text PDFSingle photon emitters (SPEs) in hexagonal boron nitride (hBN) are elementary building blocks for room-temperature on-chip quantum photonic technologies. However, fundamental challenges, such as slow radiative decay and nondeterministic placement of the emitters, limit their full potential. Here, we demonstrate large-area arrays of plasmonic nanoresonators (PNRs) for Purcell-induced room-temperature SPEs by engineering emitter-cavity coupling and enhancing radiative emission.
View Article and Find Full Text PDFIntermolecular distance largely determines the optoelectronic properties of organic matter. Conventional organic luminescent molecules are commonly used either as aggregates or as single molecules that are diluted in a foreigner matrix. They have garnered great research interest in recent decades for a variety of applications, including light-emitting diodes, lasers and quantum technologies, among others.
View Article and Find Full Text PDFLayered metal-halide perovskites, or two-dimensional perovskites, can be synthesized in solution, and their optical and electronic properties can be tuned by changing their composition. We report a molecular templating method that restricted crystal growth along all crystallographic directions except for [110] and promoted one-dimensional growth. Our approach is widely applicable to synthesize a range of high-quality layered perovskite nanowires with large aspect ratios and tunable organic-inorganic chemical compositions.
View Article and Find Full Text PDFDimensionality plays a crucial role in long-range dipole-dipole interactions (DDIs). We demonstrate that a resonant nanophotonic structure modifies the apparent dimensionality in an interacting ensemble of emitters, as revealed by population decay dynamics. Our measurements on a dense ensemble of interacting quantum emitters in a resonant nanophotonic structure with long-range DDIs reveal an effective dimensionality reduction to d[over ¯]=2.
View Article and Find Full Text PDFMetasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost.
View Article and Find Full Text PDFAll-optical switches control the amplitude, phase, and polarization of light using optical control pulses. They can operate at ultrafast timescales - essential for technology-driven applications like optical computing, and fundamental studies like time-reflection. Conventional all-optical switches have a fixed switching time, but this work demonstrates that the response-time can be controlled by selectively controlling the light-matter-interaction in so-called fast and slow materials.
View Article and Find Full Text PDFOne of the main characteristics of optical imaging systems is spatial resolution, which is restricted by the diffraction limit to approximately half the wavelength of the incident light. Along with the recently developed classical super-resolution techniques, which aim at breaking the diffraction limit in classical systems, there is a class of quantum super-resolution techniques which leverage the non-classical nature of the optical signals radiated by quantum emitters, the so-called antibunching super-resolution microscopy. This approach can ensure a factor of [Formula: see text] improvement in the spatial resolution by measuring the n -th order autocorrelation function.
View Article and Find Full Text PDFWe present an experimental study of optical time-refraction caused by time-interfaces as short as a single optical cycle. Specifically, we study the propagation of a probe pulse through a sample undergoing a large refractive index change induced by an intense modulator pulse. In these systems, increasing the refractive index abruptly leads to time-refraction where the spectrum of all the waves propagating in the medium is red-shifted, and subsequently blue-shifted when the refractive index relaxes back to its original value.
View Article and Find Full Text PDFPhotonic Time-Crystals (PTCs) are materials in which the refractive index varies periodically and abruptly in time. This medium exhibits unusual properties such as momentum bands separated by gaps within which waves can be amplified exponentially, extracting energy from the modulation. This article provides a brief review on the concepts underlying PTCs, formulates the vision and discusses the challenges.
View Article and Find Full Text PDFRecent advances in ultrafast, large-modulation photonic materials have opened the door to many new areas of research. One specific example is the exciting prospect of photonic time crystals. In this perspective, we outline the most recent material advances that are promising candidates for photonic time crystals.
View Article and Find Full Text PDFMultilayer films with continuously varying indices for each layer have attracted great deal of attention due to their superior optical, mechanical, and thermal properties. However, difficulties in fabrication have limited their application and study in scientific literature compared to multilayer films with fixed index layers. In this work we propose a neural network based inverse design technique enabled by a differentiable analytical solver for realistic design and fabrication of single material variable-index multilayer films.
View Article and Find Full Text PDFElectroluminescence efficiencies and stabilities of quasi-two-dimensional halide perovskites are restricted by the formation of multiple-quantum-well structures with broad and uncontrollable phase distributions. Here, we report a ligand design strategy to substantially suppress diffusion-limited phase disproportionation, thereby enabling better phase control. We demonstrate that extending the π-conjugation length and increasing the cross-sectional area of the ligand enables perovskite thin films with dramatically suppressed ion transport, narrowed phase distributions, reduced defect densities, and enhanced radiative recombination efficiencies.
View Article and Find Full Text PDFThe negatively charged boron vacancy (V) defect in hexagonal boron nitride (hBN) with optically addressable spin states has emerged due to its potential use in quantum sensing. Remarkably, V preserves its spin coherence when it is implanted at nanometer-scale distances from the hBN surface, potentially enabling ultrathin quantum sensors. However, its low quantum efficiency hinders its practical applications.
View Article and Find Full Text PDFThe unique properties of the emerging photonic materials, conducting nitrides and oxides, especially their tailorability, large damage thresholds, and, importantly, the so-called epsilon-near-zero (ENZ) behavior, have enabled novel photonic phenomena spanning optical circuitry, tunable metasurfaces, and nonlinear optical devices. This work explores direct control of the optical properties of polycrystalline titanium nitride (TiN) and aluminum-doped zinc oxide (AZO) by tailoring the film thickness, and their potential for ENZ-enhanced photonic applications. This study demonstrates that TiN-AZO bilayers support Ferrell-Berreman modes using the thickness-dependent ENZ resonances in the AZO films operating in the telecom wavelengths spanning from 1470 to 1750 nm.
View Article and Find Full Text PDFExtreme light confinement observed in periodic photonic structures, such as the vortex singularities in momentum () space, has been associated with their topological nature. Consequently, by exploiting and tuning their topological properties, optical metasurfaces have been demonstrated as an attractive platform for active photonics. However, given the fact that most active media under external excitations can only provide limited refractive index change, the potential advancements offered by the topological character of active metasurfaces have remained mostly unexplored.
View Article and Find Full Text PDFPlasmonic transdimensional materials (TDMs), which are atomically thin metals of precisely controlled thickness, are expected to exhibit large tailorability and dynamic tunability of their optical response as well as strong light confinement and nonlocal effects. Using spectroscopic ellipsometry, we characterize the complex permittivity of ultrathin films of passivated plasmonic titanium nitride with thicknesses ranging from 1 to 10 nm. By measuring passivated TiN, we experimentally distinguish between the contributions of an oxide layer and thickness to the optical properties.
View Article and Find Full Text PDFSolar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways.
View Article and Find Full Text PDFSingle-photon emitters are essential in enabling several emerging applications in quantum information technology, quantum sensing, and quantum communication. Scalable photonic platforms capable of hosting intrinsic or embedded sources of single-photon emission are of particular interest for the realization of integrated quantum photonic circuits. Here, we report on the observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
View Article and Find Full Text PDFOptical nonlinearities can be strongly enhanced by operating in the so-called near-zero-index (NZI) regime, where the real part of the refractive index of the system under investigation approaches zero. Here we experimentally demonstrate semi-degenerate four-wave mixing (FWM) in aluminum zinc oxide thin films generating radiation tunable in the visible spectral region, where the material is highly transparent. To this end, we employed an intense pump (787 nm) and a seed tunable in the NIR window (1100-1500 nm) to generate a visible idler wave (530-620 nm).
View Article and Find Full Text PDFTwo-dimensional hexagonal boron nitride (hBN) that hosts room-temperature single-photon emitters (SPEs) is promising for quantum information applications. An important step toward the practical application of hBN is the on-demand, position-controlled generation of SPEs. Strategies reported for deterministic creation of hBN SPEs either rely on substrate nanopatterning that is not compatible with integrated photonics or utilize radiation sources that might introduce unpredictable damage or contamination to hBN.
View Article and Find Full Text PDF