Publications by authors named "Alexandra Atalis"

Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration.

View Article and Find Full Text PDF

Despite success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability remain. Molecular adjuvants targeting pattern recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses. Native SARS-CoV-2 infection stimulates various PRRs, including toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors.

View Article and Find Full Text PDF

Despite recent success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability, remain. Although mRNA, pDNA, and viral-vector based vaccines are being administered, no protein subunit-based SARS-CoV-2 vaccine is approved. Molecular adjuvants targeting pathogen-recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses.

View Article and Find Full Text PDF

Vaccines are commonly administered subcutaneously or intramuscularly, and local immune cells, notably dendritic cells (DCs), play a significant role in transporting vaccine antigens and adjuvants to draining lymph nodes. Here, it is compared how soluble and biomaterial-mediated delivery of Toll-like receptor (TLR)-targeted adjuvants, monophosphoryl lipid A (MPLA, TLR4 ligand) and 5'-C-phosphate-G-3' DNA (CpG DNA, TLR9 ligand), modulate 3D chemotaxis of bone marrow-derived dendritic cells (BMDCs) toward lymphatic chemokine gradients. Within microfluidic devices containing 3D collagen-based matrices to mimic tissue conditions, soluble MPLA increases BMDC chemotaxis toward gradients of CCL19 and CCL21, while soluble CpG has no effect.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs).

View Article and Find Full Text PDF

While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity.

View Article and Find Full Text PDF