Herein, for the first time, we demonstrated that novel biofunctionalized semiconductor nanomaterials made of Cd-containing fluorescent quantum dot nanoconjugates with the surface capped by an aminopolysaccharide are not biologically safe for clinical applications. Conversely, the ZnS-based nanoconjugates proved to be noncytotoxic, considering all the parameters investigated. The results of in vitro cytotoxicity were remarkably dependent on the chemical composition of quantum dot (CdS or ZnS), the nature of the cell (human cancerous and embryonic types), and the concentration and time period of exposure to these nanomaterials, caused by the effects of Cd on the complex nanotoxicity pathways involved in cellular uptake.
View Article and Find Full Text PDFIn this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were used to characterise the synthesis and the relative stability of biopolymer-capped semiconductor nanocrystals.
View Article and Find Full Text PDFQuantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH.
View Article and Find Full Text PDF