Publications by authors named "Alexandra A Kulikova"

The X family polymerases (PolXs) are specialized DNA polymerases that are found in all domains of life. While the main representatives of eukaryotic PolXs, which have dedicated functions in DNA repair, were studied in much detail, the functions and diversity of prokaryotic PolXs have remained largely unexplored. Here, by combining a comprehensive bioinformatic analysis of prokaryotic PolXs and biochemical experiments involving selected recombinant enzymes, we reveal a previously unrecognized group of PolXs that seem to be lacking DNA polymerase activity.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) is central to liver regeneration. The Internalin B (InlB) protein is a virulence factor produced by the pathogenic bacterium Listeria monocytogenes. InlB is known to mimic HGF activity by interacting with the HGF receptor (HGFR) and activating HGFR-controlled signaling pathways.

View Article and Find Full Text PDF

Microbial communities are self-controlled by repertoires of lethal agents, the antibiotics. In their turn, these antibiotics are regulated by bioscavengers that are selected in the course of evolution. Kinase-mediated phosphorylation represents one of the general strategies for the emergence of antibiotic resistance.

View Article and Find Full Text PDF

Zinc-induced oligomerization of amyloid-β peptide (Aβ) produces potentially pathogenic agents of Alzheimer's disease. Mutations and modifications in the metal binding domain 1-16 of Aβ peptide crucially affect its zinc-induced oligomerization by changing intermolecular zinc mediated interface. The 3D structure of this interface appearing in a range of Aβ species is a prospective drug target for disease modifying therapy.

View Article and Find Full Text PDF

By interacting with hundreds of protein partners, 14-3-3 proteins coordinate vital cellular processes. Phosphorylation of the small heat shock protein, HSPB6, within its intrinsically disordered N-terminal domain activates its interaction with 14-3-3, ultimately triggering smooth muscle relaxation. After analyzing the binding of an HSPB6-derived phosphopeptide to 14-3-3 using isothermal calorimetry and X-ray crystallography, we have determined the crystal structure of the complete assembly consisting of the 14-3-3 dimer and full-length HSPB6 dimer and further characterized this complex in solution using fluorescence spectroscopy, small-angle X-ray scattering, and limited proteolysis.

View Article and Find Full Text PDF

Accumulation of amyloid-β (Aβ) in neurons accompanies Alzheimer's disease progression. In the cytoplasm Aβ influences activity of proteasomes, the multisubunit protein complexes that hydrolyze the majority of intracellular proteins. However, the manner in which Aβ affects the proteolytic activity of proteasomes has not been established.

View Article and Find Full Text PDF

Intracerebral or intraperitoneal injections of brain extracts from the Alzheimer's disease patients result in the acceleration of cerebral β-amyloidosis in transgenic mice. Earlier, we have found that intravenous injections of synthetic full-length amyloid-β (Aβ) comprising the isomerized Asp7 trigger cerebral β-amyloidosis. In vitro studies have shown that isomerization of Asp7 promotes zinc-induced oligomerization of the Aβ metal-binding domain (Aβ1-16).

View Article and Find Full Text PDF

Zinc-induced aggregation of the amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease (AD). Recently it was shown that phosphorylation of Aβ at Ser8 promotes the formation of toxic aggregates. In this work, we have studied the impact of Ser8 phosphorylation on the mode of zinc interaction with the Aβ metal-binding domain 1-16 using isothermal titration calorimetry, electrospray ionization mass spectrometry and NMR spectroscopy.

View Article and Find Full Text PDF

The prominent role of Ca(2+) in cell physiology is mediated by a whole set of proteins involved in Ca(2+)-signal generation, deciphering and arrest. Among these intracellular proteins, calmodulin (CaM) known as a prototypical calcium sensor, serves as a ubiquitous carrier of the intracellular calcium signal in all eukaryotic cell types. CaM is assumed to be involved in many diseases including Parkinson, Alzheimer, and rheumatoid arthritis.

View Article and Find Full Text PDF

In an attempt to reveal the mechanism of rats' resistance to Alzheimer's disease, we determined the structure of the metal-binding domain 1-16 of rat β-amyloid (rat Aβ(1-16)) in solution in the absence and presence of zinc ions. A zinc-induced dimerization of the domain was detected. The zinc coordination site was found to involve residues His-6 and His-14 of both peptide chains.

View Article and Find Full Text PDF

Analysis of complex formation between amyloid-β fragments using surface plasmon resonance biosensing and electrospray mass spectrometry reveals that region 11-14 mediates zinc-induced dimerization of amyloid-β and may serve as a potential drug target for preventing development and progression of Alzheimer's disease.

View Article and Find Full Text PDF

Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6-14 as the minimal Zn(2+) binding site wherein the ion is coordinated by His(6), Glu(11), His(13), and His(14). With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11-14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn(2+)-induced aggregation of Aβ.

View Article and Find Full Text PDF

In addition to their natural substrates GDP and GTP, the bacterial translational GTPases initiation factor (IF) 2 and elongation factor G (EF-G) interact with the alarmone molecule guanosine tetraphosphate (ppGpp), which leads to GTPase inhibition. We have used isothermal titration calorimetry to determine the affinities of ppGpp for IF2 and EF-G at a temperature interval of 5-25 °C. We find that ppGpp has a higher affinity for IF2 than for EF-G (1.

View Article and Find Full Text PDF

During initiation of messenger RNA translation in bacteria, the GTPase initiation factor (IF) 2 plays major roles in the assembly of the preinitiation 30S complex and its docking to the 50S ribosomal subunit leading to the 70S initiation complex, ready to form the first peptide bond in a nascent protein. Rapid and accurate initiation of bacterial protein synthesis is driven by conformational changes in IF2, induced by GDP-GTP exchange and GTP hydrolysis. We have used isothermal titration calorimetry and linear extrapolation to characterize the thermodynamics of the binding of GDP and GTP to free IF2 in the temperature interval 4-37 degrees C.

View Article and Find Full Text PDF