Publications by authors named "Alexander von Luhmann"

Functional Near-Infrared Spectroscopy (fNIRS) holds transformative potential for research and clinical applications in neuroscience due to its non-invasive nature and adaptability to real-world settings. However, despite its promise, fNIRS signal quality is sensitive to individual differences in biophysical factors such as hair and skin characteristics, which can significantly impact the absorption and scattering of near-infrared light. If not properly addressed, these factors risk biasing fNIRS research by disproportionately affecting signal quality across diverse populations.

View Article and Find Full Text PDF

Functional near-infrared spectroscopy (fNIRS) technology has been steadily advancing since the first measurements of human brain activity over 30 years ago. Initially, efforts were focused on increasing the channel count of fNIRS systems and then to moving from sparse to high density arrays of sources and detectors, enhancing spatial resolution through overlapping measurements. Over the last ten years, there have been rapid developments in wearable fNIRS systems that place the light sources and detectors on the head as opposed to the original approach of using fiber optics to deliver the light between the hardware and the head.

View Article and Find Full Text PDF

Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts such as those in electroencephalography (EEG). Custom, manually prepared probe layouts on textile caps are often imprecise and labor intensive. We introduce a method for creating personalized, 3D-printed headgear, enabling the accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts while reducing costs and manual labor.

View Article and Find Full Text PDF

Significance: Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts like EEG. Custom, manually prepared probe layouts on textile caps are often imprecise and labor-intensive.

Aim: We introduce a method for creating personalized, 3D-printed headgear, enabling accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts, reducing costs and manual labor.

View Article and Find Full Text PDF

When analyzing complex scenes, humans often focus their attention on an object at a particular spatial location. The ability to decode the attended spatial location would facilitate brain computer interfaces for complex scene analysis (CSA). Here, we investigated capability of functional near-infrared spectroscopy (fNIRS) to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations.

View Article and Find Full Text PDF

Significance: Short-separation (SS) regression and diffuse optical tomography (DOT) image reconstruction, two widely adopted methods in functional near-infrared spectroscopy (fNIRS), were demonstrated to individually facilitate the separation of brain activation and physiological signals, with further improvement using both sequentially. We hypothesized that doing both simultaneously would further improve the performance.

Aim: Motivated by the success of these two approaches, we propose a method, SS-DOT, which applies SS and DOT simultaneously.

View Article and Find Full Text PDF

Recent progress in optoelectronics has made wearable and high-density functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) technologies possible for the first time. These technologies have the potential to open new fields of real-world neuroscience by enabling functional neuroimaging of the human cortex at a resolution comparable to fMRI in almost any environment and population. In this perspective article, we provide a brief overview of the history and the current status of wearable high-density fNIRS and DOT approaches, discuss the greatest ongoing challenges, and provide our thoughts on the future of this remarkable technology.

View Article and Find Full Text PDF

Significance: Functional near-infrared spectroscopy (fNIRS) is a popular neuroimaging technique with proliferating hardware platforms, analysis approaches, and software tools. There has not been a standardized file format for storing fNIRS data, which has hindered the sharing of data as well as the adoption and development of software tools.

Aim: We endeavored to design a file format to facilitate the analysis and sharing of fNIRS data that is flexible enough to meet the community's needs and sufficiently defined to be implemented consistently across various hardware and software platforms.

View Article and Find Full Text PDF

: Functional near-infrared spectroscopy (fNIRS) is a noninvasive technique for measuring hemodynamic changes in the human cortex related to neural function. Due to its potential for miniaturization and relatively low cost, fNIRS has been proposed for applications, such as brain-computer interfaces (BCIs). The relatively large magnitude of the signals produced by the extracerebral physiology compared with the ones produced by evoked neural activity makes real-time fNIRS signal interpretation challenging.

View Article and Find Full Text PDF

Functional Near-Infrared Spectroscopy (fNIRS) assesses human brain activity by noninvasively measuring changes of cerebral hemoglobin concentrations caused by modulation of neuronal activity. Recent progress in signal processing and advances in system design, such as miniaturization, wearability and system sensitivity, have strengthened fNIRS as a viable and cost-effective complement to functional Magnetic Resonance Imaging (fMRI), expanding the repertoire of experimental studies that can be performed by the neuroscience community. The availability of fNIRS and Electroencephalography (EEG) for routine, increasingly unconstrained, and mobile brain imaging is leading towards a new domain that we term "" (NEW).

View Article and Find Full Text PDF

Besides passive recording of brain electric or magnetic activity, also non-ionizing electromagnetic or optical radiation can be used for real-time brain imaging. Here, changes in the radiation's absorption or scattering allow for continuous in vivo assessment of regional neurometabolic and neurovascular activity. Besides magnetic resonance imaging (MRI), over the last years, also functional near-infrared spectroscopy (fNIRS) was successfully established in real-time metabolic brain imaging.

View Article and Find Full Text PDF

Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields.

View Article and Find Full Text PDF

For the robust estimation of evoked brain activity from functional Near-Infrared Spectroscopy (fNIRS) signals, it is crucial to reduce nuisance signals from systemic physiology and motion. The current best practice incorporates short-separation (SS) fNIRS measurements as regressors in a General Linear Model (GLM). However, several challenging signal characteristics such as non-instantaneous and non-constant coupling are not yet addressed by this approach and additional auxiliary signals are not optimally exploited.

View Article and Find Full Text PDF

In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied.

View Article and Find Full Text PDF

We provide an open access multimodal brain-imaging dataset of simultaneous electroencephalography (EEG) and near-infrared spectroscopy (NIRS) recordings. Twenty-six healthy participants performed three cognitive tasks: 1) n-back (0-, 2- and 3-back), 2) discrimination/selection response task (DSR) and 3) word generation (WG) tasks. The data provided includes: 1) measured data, 2) demographic data, and 3) basic analysis results.

View Article and Find Full Text PDF

Objective: For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form.

View Article and Find Full Text PDF

We provide an open access dataset for hybrid brain-computer interfaces (BCIs) using electroencephalography (EEG) and near-infrared spectroscopy (NIRS). For this, we con-ducted two BCI experiments (left vs. right hand motor imagery; mental arithmetic vs.

View Article and Find Full Text PDF

Brain-Computer Interfaces (BCIs) and neuroergonomics research have high requirements regarding robustness and mobility. Additionally, fast applicability and customization are desired. Functional Near-Infrared Spectroscopy (fNIRS) is an increasingly established technology with a potential to satisfy these conditions.

View Article and Find Full Text PDF