Electrostatic self-assembly of macroions is an emerging area with great potential in the development of nanoscale functional objects, where photo-irradiation responsiveness can either elevate or suppress the self-assembly. The ability to control the size and shape of macroion assemblies would greatly facilitate the fabrication of desired nano-objects that can be harnessed in various applications such as catalysis, drug delivery, bio-sensors, and actuators. Here, we demonstrate that a polyelectrolyte with a size of 5 nm and multivalent counterions with a size of 1 nm can produce well-defined nanostructures ranging in size from 10-1000 nm in an aqueous environment by utilizing the concept of electrostatic self-assembly and other intermolecular non-covalent interactions including dipole-dipole interactions.
View Article and Find Full Text PDFElectrostatic self-assembly of photoacids with oppositely charged macroions yields supramolecular nano-objects in aqueous solutions, whose size is controlled through light irradiation. Nano-assemblies are formed due to electrostatic attractions and mutual hydrogen bonding of the photoacids. Irradiation with UV light leads to the deprotonation of the photoacid and, consequently, a change in particle size.
View Article and Find Full Text PDFQuadruple-switchable nanoscale assemblies are built by combining two types of water-soluble molecular photoswitches through dipole-dipole interaction. Uniting the wavelength-specific proton dissociation of a photoacid and ring-opening of an anionic spirooxazine results in an assembly that can be addressed by irradiation with two different wavelengths: pH and darkness.
View Article and Find Full Text PDFMulti-switchable supramolecular nano-objects that respond to irradiation of different wavelengths with changes in size and shape have been built from two different water-soluble molecular switches, joined by attachment to the same polyelectrolyte. Accordingly, two wavelength-specific reactions, namely the excited-state proton dissociation of a photoacid and the cis-trans isomerization of an azo dye, are combined in one supramolecular nano-object that is stable in aqueous solution. The concept has potential in the fields of sensors, molecular motors, and transport.
View Article and Find Full Text PDFThe design of functional nano-objects by electrostatic self-assembly in solution signifies an emerging field with great potential. More specifically, the targeted combination of electrostatic interaction with other effects and interactions, such as the positioning of charges on stiff building blocks, the use of additional amphiphilic, π-π stacking building blocks, or polyelectrolytes with certain architectures, have recently promulgated electrostatic self-assembly to a principle for versatile defined structure formation. A large variety of architectures from spheres over rods and hollow spheres to networks in the size range of a few tenths to a few hundred nanometers can be formed.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2021
Light- and pH-responsive nano-assemblies with switchable size and structure are formed by the association of a photoacid, anthocyanidin, and a linear polyelectrolyte in aqueous solution. Specifically, anionic disulfonated naphthol derivatives, neutral hydroxyflavylium, and cationic poly(allylamine) are used as building blocks for the ternary electrostatic self-assembly, forming well-defined supramolecular assemblies with tunable sizes of 50 to 500 nm. Due to the network of possible chemical reactions for the anthocyanidin and the excited-state dissociation of the photoacid upon irradiation, different ways to alter the ternary system through external triggering are accessible.
View Article and Find Full Text PDFIn this study, light-responsive nano-assemblies with light-switchable size based on photoacids are presented. Anionic disulfonated napthol derivates and cationic dendrimer macroions are used as building blocks for electrostatic self-assembly. Nanoparticles are already formed under the exclusion of light as a result of electrostatic interactions.
View Article and Find Full Text PDF