Purpose: Multiple myeloma (MM) affects over 35,000 patients each year in the US. There remains a need for versatile Positron Emission Tomography (PET) tracers for the detection, accurate staging, and monitoring of treatment response of MM that have optimal specificity and translational attributes. CD38 is uniformly overexpressed in MM and thus represents an ideal target to develop CD38-targeted small molecule PET radiopharmaceuticals to address these challenges.
View Article and Find Full Text PDFUnlabelled: Metastatic breast cancer is an intractable disease that responds poorly to immunotherapy. We show that p38MAPKα inhibition (p38i) limits tumor growth by reprogramming the metastatic tumor microenvironment in a CD4+ T cell-, IFNγ-, and macrophage-dependent manner. To identify targets that further increased p38i efficacy, we utilized a stromal labeling approach and single-cell RNA sequencing.
View Article and Find Full Text PDFWhile radioembolization with yttrium-90 (Y-90) microspheres is a promising treatment for hepatocellular carcinoma (HCC), lower responses in advanced and high-grade tumors present an urgent need to augment its tumoricidal efficacy. The purpose of this study was to determine whether clinically used Y-90 microspheres activate light-responsive nano-photosensitizers to enhance hepatocellular carcinoma (HCC) cell oxidative stress and cytotoxicity over Y-90 alone in vitro. Singlet oxygen and hydroxyl radical production was enhanced when Y-90 microspheres were in the presence of several nano-photosensitizers compared to either alone in cell-free conditions.
View Article and Find Full Text PDFMultiple myeloma (MM) is a multifocal malignancy of bone marrow plasma cells, characterized by vicious cycles of remission and relapse that eventually culminate in death. The disease remains mostly incurable largely due to the complex interactions between the bone microenvironment (BME) and MM cells (MMC). In the "vicious cycle" of bone disease, abnormal activation of osteoclasts (OCs) by MMC causes severe osteolysis, promotes immune evasion, and stimulates the growth of MMC.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
May 2021
Rapid liver and spleen opsonization of systemically administered nanoparticles (NPs) for applications remains the Achilles' heel of nanomedicine, allowing only a small fraction of the materials to reach the intended target tissue. Although focusing on diseases that reside in the natural disposal organs for nanoparticles is a viable option, it limits the plurality of lesions that could benefit from nanomedical interventions. Here we designed a theranostic nanoplatform consisting of reactive oxygen (ROS)-generating titanium dioxide (TiO) NPs, coated with a tumor-targeting agent, transferrin (Tf), and radiolabeled with a radionuclide (Zr) for targeting bone marrow, imaging the distribution of the NPs, and stimulating ROS generation for cell killing.
View Article and Find Full Text PDFMultiple myeloma (MM) is an age-related hematological malignancy with an estimated 30,000 new cases and 13,000 deaths per year. A disease of antibody-secreting malignant plasma B-cells that grow primarily in the bone marrow (BM), MM causes debilitating fractures, anemia, renal failure, and hypercalcemia. In addition to the abnormal genetic profile of MM cells, the permissive BM microenvironment (BMM) supports MM pathogenesis.
View Article and Find Full Text PDFDespite over 20 years of clinical use, IL-2 has not fulfilled expectations as a safe and effective form of tumour immunotherapy. Expression of the high affinity IL-2Rα chain on regulatory T cells mitigates the anti-tumour immune response and its expression on vascular endothelium is responsible for life threatening complications such as diffuse capillary leak and pulmonary oedema. Here we describe the development of a recombinant fusion protein comprised of a cowpox virus encoded NKG2D binding protein (OMCP) and a mutated form of IL-2 with poor affinity for IL-2Rα.
View Article and Find Full Text PDFIntroduction: Cardiovascular disease is the leading cause of death in the United States. The identification of vulnerable plaque at risk of rupture has been a major focus of research. Hypoxia has been identified as a potential factor in the formation of vulnerable plaque, and it is clear that decreased oxygen plays a role in the development of plaque angiogenesis leading to plaque destabilization.
View Article and Find Full Text PDFThe goal of this work was to study the efficacy of the positron emission tomography (PET) tracers 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]ATSM) and in monitoring placental and fetal functional response to acute hyperoxia in late-term pregnant mice subjected to experimentally induced chronic hypoxia. E15 mice were maintained at 12% inspired oxygen for 72 hours and then imaged during oxygen inhalation with either [18F]FDG to monitor nutrient transport or 64Cu-ATSM to establish the presence of hypoxia. Computed tomography (CT) with contrast allowed clear visualization of both placentas and fetuses.
View Article and Find Full Text PDFPertuzumab is a monoclonal antibody that binds to HER2 and is used in combination with another HER2-specific monoclonal antibody, trastuzumab, for the treatment of HER2+ metastatic breast cancer. Pertuzumab binds to an HER2 binding site distinct from that of trastuzumab, and its affinity is enhanced when trastuzumab is present. We aim to exploit this enhanced affinity of pertuzumab for its HER2 binding epitope and adapt this antibody as a PET imaging agent by radiolabeling with (89)Zr to increase the sensitivity of HER2 detection in vivo.
View Article and Find Full Text PDFCD47 functions as a marker of "self" by inhibiting phagocytosis of autologous cells. CD47 has been shown to be overexpressed by various tumor types as a means of escaping the antitumor immune response. The goal of this research was to investigate the utility of CD47 imaging using positron emission tomography (PET) in both human xenograft and murine allograft tumor models.
View Article and Find Full Text PDFBiomedical imaging techniques such as skeletal survey and (18)F-fluorodeoxyglucose (FDG)/Positron Emission Tomography (PET) are frequently used to diagnose and stage multiple myeloma (MM) patients. However, skeletal survey has limited sensitivity as it can detect osteolytic lesions only after 30-50% cortical bone destruction, and FDG is a marker of cell metabolism that has limited sensitivity for intramedullary lesions in MM. Targeted, and non-invasive novel probes are needed to sensitively and selectively image the unique molecular signatures and cellular processes associated with MM.
View Article and Find Full Text PDFCancer treatment by chemotherapy is typically accompanied by deleterious side effects, attributed to the toxic action of chemotherapeutics on proliferating cells from nontumor tissues. The cell surface proteoglycan CD44 has been recognized as a cancer stem cell marker. The present study has examined CD44 targeting as a way to selectively deliver therapeutic agents encapsulated inside colloidal delivery systems.
View Article and Find Full Text PDFObjective: The goal of this study was to develop dually radiolabeled peptides for simultaneous imaging of cancer cell localization by targeting the α(v)β(3) integrin and their pathophysiology by targeting the activity of the proteolytic enzyme MMP2, involved in the metastatic process.
Methods: A hybrid peptide c(RGDfE)K(DOTA)PLGVRY containing an RGD motif for binding to the α(v)β(3)integrin, a metal chelator (DOTA) for radiolabeling with [(64)Cu], and the MMP2 substrate cleavage sequence PLGVRY with terminal tyrosine for labeling with [(123)I] was synthesized, labeled with [(64)Cu] and [(123)I], and evaluated in vitro as a potential imaging agent.
Results: The peptide was synthesized and labeled with [(64)Cu] and [(123)I] with 300 and 40 μCi/μg (542 and 72.
Unlabelled: Despite advances in cancer treatment over the past few decades, metastatic disease remains the primary cause of morbidity and mortality. Recent reports suggest the formation of a "premetastatic niche" before the metastatic cascade, where niche is defined as the microenvironment for tumor cells to be able to engraft and proliferate at secondary sites. Bone marrow-derived (BMD) cells that express vascular endothelial growth factor receptor-1 and very late antigen-4 (VLA-4) have been shown to arrive at sites of metastasis to form a receptive environment for tumor cells.
View Article and Find Full Text PDFPurpose: The goal of this study was to determine the specificity of ⁶⁴Cu-CB-TE2A-c(RGDyK) (⁶⁴Cu-RGD) for osteoclast-related diseases, such as Paget's disease or rheumatoid arthritis.
Procedures: C57BL/6 mice were treated systemically with osteoprotegerin (OPG) for 15 days or RANKL for 11 days to suppress and stimulate osteoclastogenesis, respectively. The mice were then imaged by positron emission tomography/computed tomography using ⁶⁴Cu-RGD, followed by determination of serum TRAP5b and bone histology.
Unlabelled: Bombesin is a 14-amino-acid amphibian peptide that binds with high affinity to the gastrin-releasing peptide receptor (GRPR), which is overexpressed on a variety of solid tumors. It has been demonstrated that bombesin analogs can be radiolabeled with a variety of radiometals for potential diagnosis and treatment of GRPR-positive tumors. In this regard, several studies have used different chelators conjugated to the 8 C-terminal amino acids of bombesin(7-14) for radiolabeling with (64)Cu.
View Article and Find Full Text PDFA series of multivalent, functional polymer nanoparticles with diagnostic/imaging units and targeting ligands for molecular targeting were synthesized with the loading of the chain-end-functionalized GRGDS peptide targeting sequence (model system based on integrin α(v)β(3)) ranging from 0 to 50%. Accurate structural and functional group control in these systems was achieved through a modular approach involving the use of multiple functionalized macromonomer/monomer units combined with living free radical polymerization. In cellulo results show an increase in uptake in α(v)β(3) integrin-positive U87MG glioblastoma cells with increasing RGD loading and a possible upper limit on the effectiveness of the number of RGD peptides for targeting α(v)β(3) integrin.
View Article and Find Full Text PDFUnlabelled: This article describes the evaluation of the radiopharmaceutical (64)Cu-CB-TE2A-c(RGDyK) ((64)Cu-RGD) as an imaging agent for osteolytic bone metastases and their associated inflammation by targeting of the alpha(v)beta(3) integrin on osteoclasts and the proinflammatory cells involved at the bone metastatic site.
Methods: The (64)Cu-RGD radiotracer was evaluated in the transgenic mouse expressing Tax (Tax(+)), which spontaneously develops osteolytic tumors throughout the vertebrae and hind limbs, using biodistribution studies and small-animal PET/CT. Histologic analysis was also performed on Tax(+) mouse tails, using hematoxylin and eosin and tartrate-resistant acid phosphatase to confirm the presence of osteolytic bone lesions and the presence of osteoclasts, respectively.
Unlabelled: Recently, the somatostatin receptor subtype 2 (SSTR2) selective antagonist sst2-ANT was determined to have a high affinity for SSTR2. Additionally, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-sst2-ANT showed high uptake in an SSTR2-transfected, tumor-bearing mouse model and suggested that radiolabeled SSTR2 antagonists may be superior to agonists for imaging SSTR2-positive tumors. This report describes the synthesis and evaluation of 64Cu-CB-4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.
View Article and Find Full Text PDF