Publications by authors named "Alexander Zharov"

Article Synopsis
  • - The letter proposes a non-reciprocal electromagnetic metasurface that utilizes a highly nonlinear liquid metamaterial to create a significant difference in transmission coefficients, reaching up to 0.95 between forward and backward directions.
  • - This metasurface is designed to be thin, only comparable to the wavelength, making it efficient for practical applications.
  • - The high nonlinearity of the liquid metamaterial requires less radiation power to trigger nonlinear effects, and the concept has been validated through numerical simulations.
View Article and Find Full Text PDF
Article Synopsis
  • - The study explored how an external electric field can control light transmission in a plasmonic liquid metacrystal, leading to changes in how light is polarized and transmitted.
  • - By applying a static electric field, researchers induced macroscopic anisotropy, impacting the transmission of light based on its polarization and the arrangement of the meta-atoms.
  • - The study combined experimental findings with theoretical analysis to understand light behavior in the metacrystal, validating the results through comparison with experimental data.
View Article and Find Full Text PDF

We show that transverse electromagnetic waves propagating along an external static electric field in liquid metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation of bright spatial solitons.

View Article and Find Full Text PDF

We introduce a new concept of the nonlinear control of invisibility cloaking. We study the scattering properties of multi-shell plasmonic nanoparticles with a nonlinear response of one of the shells, and demonstrate that the scattering cross-section of such particles can be controlled by a power of the incident electromagnetic radiation. More specifically, we can either increase or decrease the scattering cross-section by changing the intensity of the external field, as well as control the scattering efficiently and even reverse the radiation direction.

View Article and Find Full Text PDF

We suggest using tapered waveguides for compensating losses of surface plasmon-polaritons in order to enhance nonlinear effects at the nanoscale. We study nonlinear plasmon self-focusing in tapered metal-dielectric-metal slot waveguides and demonstrate that, by an appropriate choice of the taper angle, we can effectively suppress the mode attenuation achieving stable propagation of a spatial plasmon soliton. For larger tapering angles we observe plasmon-beam nanofocusing in both spatial dimensions.

View Article and Find Full Text PDF

We employ the analytical solutions for the spatial transformation of the electromagnetic fields to obtain and analyze explicit expressions for the structure of the electromagnetic fields in invisibility cloaks. Similar approach can be also used for analyzing beam splitters and field concentrators. We study the efficiency of nonideal electromagnetic cloaks and discuss the effect of scattering losses on the cloak invisibility.

View Article and Find Full Text PDF

We study one- and two-dimensional transmission of electromagnetic waves through a finite slab of a dielectric material with negative refraction. In the case when the dielectric slab possesses an intensitydependent nonlinear response, we observe the nonlinearity-induced wave transmission through an opaque slab accompanied by the generation of spatiotemporal solitons. We solve this problem numerically, by employing the finite-difference time-domain simulations, for the parameters of microstructured materials with the negative refractive index in the microwave region, but our results can be useful for a design of nonlinear metamaterials with the left-handed properties in other frequency range.

View Article and Find Full Text PDF

We study the electromagnetic beam reflection from layered structures that include the so-called double-negative metamaterials, also called left-handed metamaterials. We predict that such structures can demonstrate a giant lateral Goos-Hänchen shift of the scattered beam accompanied by a splitting of the reflected and transmitted beams due to the resonant excitation of surface waves at the interfaces between the conventional and double-negative materials as well as due to the excitation of leaky modes in the layered structures. The beam shift can be either positive or negative, depending on the type of the guided waves excited by the incoming beam.

View Article and Find Full Text PDF

We analyze transmission of electromagnetic waves through a one-dimensional periodic layered structure consisting of slabs of a left-handed metamaterial and air. We derive the effective parameters of the metamaterial from a microscopic structure of wires and split-ring resonators possessing the left-handed characteristics in the microwave frequency range, and then study, by means of the transfer-matrix approach and the finite-difference time-domain numerical simulations, the transmission properties of this layered structure in a band gap associated with the zero averaged refractive index. By introducing defects, the transmission of such a structure can be made tunable, and we study the similarities and differences of the defects modes excited in two types of the band gaps.

View Article and Find Full Text PDF

We study both linear and nonlinear surface waves localized at the interface separating a left-handed (LH) medium (i.e., a medium with both negative dielectric permittivity and negative magnetic permeability) and a conventional [or right-handed (RH)] dielectric medium.

View Article and Find Full Text PDF

We analyze the properties of microstructured materials with negative refraction, the so-called left-handed metamaterials. We consider a two-dimensional periodic structure created by arrays of wires and split-ring resonators embedded into a nonlinear dielectric, and calculate the effective nonlinear electric permittivity and magnetic permeability. We demonstrate that the hysteresis-type dependence of the magnetic permeability on the field intensity allows changing the material properties from left- to right-handed and back.

View Article and Find Full Text PDF