Age-related physiological changes in humans are linearly associated with age. Naturally, linear combinations of physiological measures trained to estimate chronological age have recently emerged as a practical way to quantify aging in the form of biological age. In this work, we used one-week long physical activity records from a 2003-2006 National Health and Nutrition Examination Survey (NHANES) to compare three increasingly accurate biological age models: the unsupervised Principal Components Analysis (PCA) score, a multivariate linear regression, and a state-of-the-art deep convolutional neural network (CNN).
View Article and Find Full Text PDFAlthough modeling of activation kinetics for various cell signaling pathways has reached a high grade of sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway science for real needs of prescription of the most effective drugs for individual patients. The methods for such prescription evaluate the degree of pathological changes in the signaling machinery based on two types of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular pathway graphs that reflect interactions between the pathway members.
View Article and Find Full Text PDFWe propose a new biomathematical method, OncoFinder, for both quantitative and qualitative analysis of the intracellular signaling pathway activation (SPA). This method is universal and may be used for the analysis of any physiological, stress, malignancy and other perturbed conditions at the molecular level. In contrast to the other existing techniques for aggregation and generalization of the gene expression data for individual samples, we suggest to distinguish the positive/activator and negative/repressor role of every gene product in each pathway.
View Article and Find Full Text PDF