Antiaromatic nucleophilic substitution reactions in cycloheptatrienide pyridinium and phosphonium zwitterions with initial formation of a cycloheptatetraene intermediate are explored. The mechanism was supported by quantum chemical calculations, first-order reaction kinetics, and high-resolution mass spectrometry. The pyridinium zwitterion exhibited weak antiaromaticity, whereas the intermediate displayed Möbius aromaticity, as evidenced by nuclear independent chemical shift values and the shape of its HOMO.
View Article and Find Full Text PDFAn approach to the synthesis of seven-membered systems via the chain elongation of nucleophilic propenes and subsequent 8π-electrocyclization is proposed. The cascade reaction yields either cycloheptadienes or bicycloheptenes, and the latter are formed via a 6π-electrocyclization of intermediate cycloheptadienyl anion which was proved to be reversible in a basic medium. The electrocyclic nature of the ring-closing reactions was supported by density functional theory and DLPNO/CCSD(T) calculations.
View Article and Find Full Text PDF