Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied.
View Article and Find Full Text PDFIonic transport plays a central role in key technologies relevant to energy, and information processing and storage, as well as in the implementation of biological functions in living organisms. Here, we introduce a supramolecular strategy based on the non-destructive chemical patterning of a highly ordered self-assembled monolayer that allows the reproducible fabrication of ion-conducting surface patterns (ion-conducting channels) with top -COOH functional groups precisely definable over the full range of length scales from nanometre to centimetre. The transport of a single layer of selected metal ions and the electrochemical processes related to their motion may thus be confined to predefined surface paths.
View Article and Find Full Text PDFThis study describes a new method for fabrication of thin composite films using physical vapor deposition (PVD). Titanium (Ti) and hybrid films of titanium containing tungsten disulphide nanoparticles with inorganic fullerene-like structure (Ti/IF-WS2) were fabricated with a modified PVD machine. The evaporation process includes the pulsed deposition of IF-WS2 by a sprayer head.
View Article and Find Full Text PDFA new method is presented for patterning surfaces with gradient properties. The method is based on magnetolithography in which the surface patterning is performed by applying a gradient of a magnetic field on the substrate, using paramagnetic metal masks in the presence of a constant magnetic field. Superparamagnetic nanoparticles (NPs) are deposited on the substrate, and they assemble according to the field and its gradients induced by the mask.
View Article and Find Full Text PDFWe describe the fabrication of a patterned, hydrophobic silicon substrate that can pin a water droplet despite its large contact angle. Arrays of nm tips in silicon were fabricated by reactive ion etching using polymer masks defined by photolithography. A droplet sitting on one class of these substrates did not fall even after the substrate was turned upside-down.
View Article and Find Full Text PDF