Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) on cluster-assembled super-hydrophilic nanoporous titania films deposited on hydrophobic conductive-polymer substrates feature a unique combination of surface properties that significantly improve the possibilities of capturing and processing biological samples before and during the MALDI-MS analysis without changing the selected sample target (multi-dimensional MALDI-MS). In contrast to pure hydrophobic surfaces, such films promote a remarkable biologically active film porosity at the nanoscale due to the soft assembling of ultrafine atomic clusters. This unique combination of nanoscale porosity and super-hydrophilicity provides room for effective sample capturing, while the hydrophilic-hydrophobic discontinuity at the border of the dot-patterned film acts as a wettability-driven containment for sample/reagent droplets.
View Article and Find Full Text PDFA novel, multimicrocapillary flow reactor (MμCFR) was constructed and applied to a series of sensitized photoadditions involving 2(5H)-furanones. The reactor allowed for rapid and energy-, time-, and space-efficient sensitizer screening, process optimization, validation, scale-up, and library synthesis.
View Article and Find Full Text PDFBackground: The presence of calcium phosphate crystals such as basic calcium phosphate and calcium pyrophosphate dihydrate in intra-articular fluid is linked to a number of destructive arthropathies and detection of these deposits is often pivotal for early diagnosis and appropriate management of such disease.
Results: We describe the use of a calcium-sensitive dye, Fluo-4, to selectively label calcium-containing mineral deposits in synovial fluid, which can then be easily visualized using a standard fluorescence microscope. Furthermore, we have combined the fluorescent properties of the tagged crystals with flow cytometry as a fast and semi-quantitative method of detection.
Glycidyl methacrylate-ethylene dimethacrylate (GMA-co-EDMA) based monolithic porous layer open tubular (monoPLOT) columns (0.05 mm I.D.
View Article and Find Full Text PDFThree types of micro-photoreactor setups were investigated using DMBP-sensitized additions of isopropanol to furanones as model reactions. The results were compared to experiments using a conventional batch reactor. Based on conversion rates, reactor geometries and energy efficiency calculations the microsystems showed superior performances over the batch process.
View Article and Find Full Text PDFBackground: Microscopic inorganic crystals are commonly observed in the synovial fluid of patients suffering from arthritic diseases. Basic calcium phosphate (BCP) crystals are known to occur quite commonly in the joint fluid of osteoarthritis (OA) patients and are insoluble at physiological pH. Current analysis of patient synovial fluid depends on light microscopy and staining with Alizarin Red-S.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2010
The DMBP-sensitized addition of isopropanol to furanones was studied in a novel LED-driven microchip reactor. Complete conversions were achieved after just 2.5 to 5 min of irradiation with 6 × 365 nm high-power LEDs.
View Article and Find Full Text PDFClinically, osteoarthritis (OA) is characterised by joint pain, stiffness after immobility, limitation of movement and, in many cases, the presence of basic calcium phosphate (BCP) crystals in the joint fluid. The detection of BCP crystals in the synovial fluid of patients with OA is fraught with challenges due to the submicroscopic size of BCP, the complex nature of the matrix in which they are found and the fact that other crystals can co-exist with them in cases of mixed pathology. Routine analysis of joint crystals still relies almost exclusively on the use of optical microscopy, which has limited applicability for BCP crystal identification due to limited resolution and the inherent subjectivity of the technique.
View Article and Find Full Text PDF