Publications by authors named "Alexander Yakushev"

Adsorption energies () of the superheavy element (SHE) Mc, its lighter homologue (Bi), as well as of another superheavy element Nh and some lighter homologues of SHEs on gold and hydroxylated quartz surfaces are predicted via periodic relativistic density functional theory calculations. The aim of this study is to support "one-atom-at-a-time" gas-phase chromatography experiments that are examining the reactivity and volatility of Mc. The obtained values of the Bi and Mc atoms on the Au(111) surface are >200 kJ/mol.

View Article and Find Full Text PDF

The on-going developments in laser acceleration of protons and light ions, as well as the production of strong bursts of neutrons and multi-[Formula: see text] photons by secondary processes now provide a basis for novel high-flux nuclear physics experiments. While the maximum energy of protons resulting from Target Normal Sheath Acceleration is presently still limited to around [Formula: see text], the generated proton peak flux within the short laser-accelerated bunches can already today exceed the values achievable at the most advanced conventional accelerators by orders of magnitude. This paper consists of two parts covering the scientific motivation and relevance of such experiments and a first proof-of-principle demonstration.

View Article and Find Full Text PDF

Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale approximately as the square of the atomic number. However, for the transfermium elements (those with atomic numbers greater than 100), the atomic structure is experimentally unknown.

View Article and Find Full Text PDF

The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z.

View Article and Find Full Text PDF

Carbonyl complexes of radioactive transition metals can be easily synthesized with high yields by stopping nuclear fission or fusion products in a gas volume containing CO. Here, we focus on Mo, W, and Os complexes. The reaction takes place at pressures of around 1 bar at room temperature, i.

View Article and Find Full Text PDF