Publications by authors named "Alexander Yakirevich"

The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources and partially flows through a karst system. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused sewage to leak into the creek located in the study area. Carbamazepine (CBZ) was used as an indicator for the presence of sewage in the groundwater.

View Article and Find Full Text PDF

Microbial quality of surface waters attracts attention due to food- and waterborne disease outbreaks. Fecal indicator organisms (FIOs) are commonly used for the microbial pollution level evaluation. Models predicting the fate and transport of FIOs are required to design and evaluate best management practices that reduce the microbial pollution in ecosystems and water sources and thus help to predict the risk of food and waterborne diseases.

View Article and Find Full Text PDF

A main concern with reuse of treated domestic wastewater (DWW) in irrigation is its possible effect on the soil. Few studies have focused on DWW treated in on-site settings, which generally use low-tech systems that can be constructed and serviced locally. One such system is the recirculating vertical flow constructed wetland (RVFCW).

View Article and Find Full Text PDF

Typical sand caps used for sediment remediation have little sorption capacity to retard the migration of hydrophobic contaminants such as PAHs that can be mobilized by significant groundwater flow. Laboratory column experiments were performed using contaminated sediments and capping materials from a creosote contaminated USEPA Superfund site. Azoic laboratory column experiments demonstrated rapid breakthrough of lower molecular weight PAHs when groundwater seepage was simulated through a column packed with coarse sand capping material.

View Article and Find Full Text PDF

The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models.

View Article and Find Full Text PDF

Segmented line-source multi-tracer injection is suggested as an effective method for assessing groundwater velocities and flow directions in subsurfaces characterized by high water flux. Modifying the common techniques of injecting a tracer into a well became necessary after point-source natural and forced gradient tracer tests ended with no reliable information on the local groundwater flow. The tracer's line-source increases the likelihood of success of the test and could provide additional information regarding the lateral heterogeneity of the aquifer.

View Article and Find Full Text PDF

The recirculating vertical flow constructed wetland (RVFCW) was developed for the treatment of domestic wastewater (DWW). In this system, DWW is applied to a vertical flow bed through which it trickles into a reservoir located beneath the bed. It is then recirculated back to the root zone of the bed.

View Article and Find Full Text PDF

Colloid transport was studied in heterogeneous sand columns under unsaturated steady-state conditions, using two sizes of acid-cleaned sand to pack the column. Heterogeneity was created by placing three continuous tubes of fine sand (3.6% of the total volume) within a column of coarse sand (mean grain diameters 0.

View Article and Find Full Text PDF

A point dilution test is commonly used in single-borehole tracer experiments designed to determine the Darcy velocity of a formation. This method is based on the concept that, in a borehole, a tracer's concentration declines as a consequence of the water flux. Based on theoretical simulations and field observations, this study indicates that for low-permeability, yet highly porous fractured formations, the common practice of excluding the effect of diffusive mass flux between the dissolved tracer within the borehole and the surrounding matrix may lead to significant errors in the assessment of the Darcy velocity.

View Article and Find Full Text PDF

The two-dimensional distribution of flow patterns and their dynamic change due to microbial activity were investigated in naturally fractured chalk cores. Long-term biodegradation experiments were conducted in two cores ( approximately 20 cm diameter, 31 and 44 cm long), intersected by a natural fracture. 2,4,6-tribromophenol (TBP) was used as a model contaminant and as the sole carbon source for aerobic microbial activity.

View Article and Find Full Text PDF

The flushing potential of a desert loess soil contaminated by the flame retardant Tetrabromobisphenol A (TBBPA), chloride (Cl(-)) and bromide (Br(-)) was studied in undisturbed laboratory column experiments (20 cm diameter, 45 cm long) and a small field plot (2 x 2 m). While the soluble inorganic ions (Cl(-) and Br(-)) were efficiently flushed from the soil profile after less than three pore volumes (PV) of water, about 50% of the initial amount of TBBPA in the soil was also flushed, despite its hydrophobic nature. TBBPA leaching was made possible due to a significant increase in the pH of the soil solution from 7.

View Article and Find Full Text PDF

The effect of physicochemical conditions (residence time, oxygen concentrations, and chalk characteristics) on the biodegradation of 2,4,6-tribromophenol (TBP) during transport was investigated in low-permeability fractured-chalk cores. Long-term (approximately 600 d) biodegradation experiments were conducted in two cores (approximately 21 cm diameter, 31 and 44 cm long, respectively), intersected by a natural fracture. TBP was used as a model contaminant and as the sole carbon source for aerobic microbial activity.

View Article and Find Full Text PDF

The impact of microbial activity on fractured chalk transmissivity was investigated on a laboratory scale. Long-term experiments were conducted on six fractured chalk cores (20 cm diameter, 23-44 cm long) containing a single natural fracture embedded in a porous matrix. Biodegradation experiments were conducted under various conditions, including several substrate and oxygen concentrations and flow rates.

View Article and Find Full Text PDF