Abstract Effects of stem and progenitor cells or their compounds on recipient cells are investigated intensively today. In spite of this, their ability to interact with native cells and the final targets affected by them, particularly biochemical parameters that characterize cell redox-dependent processes, remain little studied. We have studied how bioregulators of stem and progenitor cells affect these processes in freshly isolated liver after animal pretreatment in vivo.
View Article and Find Full Text PDFSUMMARY: Organ transplantation has developed over the past 50 years to reach the sophisticated and integrated clinical service of today through several advances in science. One of the most important of these has been the ability to apply organ preservation protocols to deliver donor organs of high quality, via a network of organ exchange to match the most suitable recipient patient to the best available organ, capable of rapid resumption of life-sustaining function in the recipient patient. This has only been possible by amassing a good understanding of the potential effects of hypoxic injury on donated organs, and how to prevent these by applying organ preservation.
View Article and Find Full Text PDFReversible uncoupling of the mitochondrial electron-transport chain may be one strategy to prevent intracellular oxidative stress during liver cold preservation/warm reperfusion (CP/WR) injury. 2,4-Dinitrophenol (DNP) is a potent water-soluble uncoupling agent for supplementation of the hepatic CP solution. The aim of this work was to investigate the possible influence of DNP in the CP solution on the isolated rat liver state during CP/WR.
View Article and Find Full Text PDFBackground And Aim: Chronic liver failure results in the decrease of the number of functioning hepatocytes. It dictates the necessity of using exogenous viable cells or/and agents that can stimulate hepatic regenerative processes. Fetal liver contains both hepatic and hematopoietic stem cells with high proliferative potential, which may replace damaged cells.
View Article and Find Full Text PDFHepatocyte transplantation is a promising method for supporting hepatic function in a broad spectrum of liver diseases. The aim of this work was to test the efficacy of human fetal liver cells to support the chronic failing liver in an experimental model of carbon tetrachloride (CCl4)-induced cirrhosis in rats. Liver cirrhosis was induced by intraperitoneal administration of CCl4 at a dose of 0.
View Article and Find Full Text PDF