Publications by authors named "Alexander Y Piggott"

Accurate three-dimensional (3D) imaging is essential for machines to map and interact with the physical world. Although numerous 3D imaging technologies exist, each addressing niche applications with varying degrees of success, none has achieved the breadth of applicability and impact that digital image sensors have in the two-dimensional imaging world. A large-scale two-dimensional array of coherent detector pixels operating as a light detection and ranging system could serve as a universal 3D imaging platform.

View Article and Find Full Text PDF

Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits.

View Article and Find Full Text PDF

We present a gradient-based algorithm to design general 1D grating couplers without any human input from start to finish, including a choice of initial condition. We show that we can reliably design efficient couplers to have multiple functionalities in different geometries, including conventional couplers for single-polarization and single-wavelength operation, polarization-insensitive couplers, and wavelength-demultiplexing couplers. In particular, we design a fiber-to-chip blazed grating with under 0.

View Article and Find Full Text PDF

A major difficulty in applying computational design methods to nanophotonic devices is ensuring that the resulting designs are fabricable. Here, we describe a general inverse design algorithm for nanophotonic devices that directly incorporates fabrication constraints. To demonstrate the capabilities of our method, we designed a spatial-mode demultiplexer, wavelength demultiplexer, and directional coupler.

View Article and Find Full Text PDF

A silicon-compatible light source is the final missing piece for completing high-speed, low-power on-chip optical interconnects. In this paper, we present a germanium nanowire light emitter that encompasses all the aspects of potential low-threshold lasers: highly strained germanium gain medium, strain-induced pseudoheterostructure, and high-Q nanophotonic cavity. Our nanowire structure presents greatly enhanced photoluminescence into cavity modes with measured quality factors of up to 2000.

View Article and Find Full Text PDF

Nanophotonics has emerged as a powerful tool for manipulating light on chips. Almost all of today's devices, however, have been designed using slow and ineffective brute-force search methods, leading in many cases to limited device performance. In this article, we provide a complete demonstration of our recently proposed inverse design technique, wherein the user specifies design constraints in the form of target fields rather than a dielectric constant profile, and in particular we use this method to demonstrate a new demultiplexing grating.

View Article and Find Full Text PDF

We demonstrate a photo-induced oxidation technique for tuning GaAs photonic crystal cavities using a low-power 390 nm pulsed laser. The laser oxidizes a small (< 1 μm) diameter spot, reducing the local index of refraction and blueshifting the cavity. The tuning progress can be actively monitored in real time.

View Article and Find Full Text PDF