This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms.
View Article and Find Full Text PDFMalignant glioma is the most common and deadly brain tumor. A marked reduction in the levels of sGC (soluble guanylyl cyclase) transcript in the human glioma specimens has been revealed in our previous studies. In the present study, restoring the expression of sGCβ1 alone repressed the aggressive course of glioma.
View Article and Find Full Text PDFThe present case-control study aimed to assess associations of routine and experimental biomarkers with risk for cardiovascular death and acute myocardial infarction (AMI) in a cohort recruited from the multicenter study "Cardiovascular Epidemiology in Russian Federation" (ESSE-RF) to identify experimental biomarkers potentially suitable for expanded evaluation. A total of 222 subjects included cardiovascular death (N = 48) and AMI cases (N = 63) during 6.5-year follow up and matched healthy controls.
View Article and Find Full Text PDFProtein expression profiling in the serum is used to identify novel biomarkers and investigate the signaling pathways in various diseases. The aim of the present study was to evaluate serum biomarkers associated with coronary artery stenosis resulting from atherosclerosis. The study included 4 groups of subjects: group A and B with and without coronary lesions, respectively, were selected from a previously reported cohort study on coronary atherosclerosis, control group C comprised of asymptomatic subjects and group D was used for independent validation of the microarray data by ELISA.
View Article and Find Full Text PDFObjectives: Endothelial dysfunction contributes to the onset and progression of cardiovascular diseases. However, direct associations of vasoactive mediators with cardiovascular risk are poorly understood.
Methods: We have determined associations of circulating levels of stable metabolites of nitric oxide, nitrate and nitrite (NOx), endothelin-1, and the endothelin-1/NOx ratio with blood pressure in 177 asymptomatic subjects without signs of coronary atherosclerosis; associations with blood pressure and with presence of coronary lesions were also evaluated in 457 patients suspected to have coronary heart disease with or without coronary lesions confirmed by coronary angiography.
Adiponectin, endothelin and nitric oxide (NO) are major regulators of vascular function. An imbalance of vasoactive factors contributes to the onset and progression of atherosclerosis. Various single nucleotide polymorphisms (SNPs) are considered to be risk factors for coronary heart disease.
View Article and Find Full Text PDFBackground: Nitric oxide (NO) is one of the key regulators of vascular function. Abnormal NO signalling is linked to various cardiovascular diseases. We studied associations between circulating levels of NO metabolites, nitrite and nitrate (NOx) and total and cardiovascular mortality in a prospective 8-year follow-up cohort study in 1869 patients aged over 55 years.
View Article and Find Full Text PDFObjective: PBR characterizes penetration of red blood cells inside glycocalyx and its thickness can have profound impact on microcirculation and other vascular parameters. The goal of our study was to reliably quantify PBR and assess its potential use as a new marker of cardiovascular pathology.
Methods: The study included 208 patients (123 men and 85 women from 40 to 65 years of age) with various grades of cardiovascular SCORE risk index and IHD.
The nitric oxide (NO)-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR) to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR) repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1).
View Article and Find Full Text PDFBackground: Nitric oxide and its metabolites, nitrate and nitrite, are important regulators linked to various diseases. We studied the association of fasting serum concentrations of nitrate and nitrite, combined as NOx, without special diet, with the prevalence of various chronic diseases.
Methods: Fasting concentrations of NOx were assayed in a cohort of 1087 patients recruited to Stress Aging and Health in Russia study that represents male and female population in Moscow, Russia, over 55 years of age.
Curcumin, an active ingredient of dietary spice used in curry, has been shown to exhibit anti-oxidant, anti-inflammatory and anti-proliferative properties. Using EB directed differentiation protocol of H-9 human embryonic stem (ES) cells; we evaluated the effect of curcumin (0-20 μmol/L) in enhancing such differentiation. Our results using real time PCR, western blotting and immunostaining demonstrated that curcumin significantly increased the gene expression and protein levels of cardiac specific transcription factor NKx2.
View Article and Find Full Text PDFThe NO and cGMP signaling pathways are of broad physiological and pathological significance. We compared the NO/soluble guanylyl cyclase (sGC)/cGMP pathway in human glioma tissues and cell lines with that of healthy control samples and demonstrated that sGC expression is significantly lower in glioma preparations. Our analysis of GEO databases (National Cancer Institute) further revealed a statistically significant reduction of sGC transcript levels in human glioma specimens.
View Article and Find Full Text PDFNitric oxide (NO), an important mediator molecule in mammalian physiology, initiates a number of signaling mechanisms by activating the enzyme soluble guanylyl cyclase (sGC). Recently, a new role for NO/cyclic guanosine monophosphate signaling in embryonic development and cell differentiation has emerged. The changes in expression of NO synthase isoforms and various sGC subunits has been demonstrated during human and mouse embryonic stem (ES) cells differentiation.
View Article and Find Full Text PDFBackground: Administration of L-nil, a selective inhibitor of inducible nitric oxide synthase (iNOS), improves ileus in an animal model of resuscitation induced intestinal edema. The purpose of this study was to elucidate the iNOS/nitric oxide (NO) signal transduction pathway in intestinal edema.
Materials And Methods: Male Sprague Dawley rats were divided into two groups; CONTROL and RESUS+VH (edema, 80 cc/kg normal saline (resuscitation) with mesenteric venous hypertension).
Our previous studies demonstrate a differential expression of nitric oxide (NO) signaling components in ES cells and our recent study demonstrated an enhanced differentiation of ES cells into myocardial cells with NO donors and soluble guanylyl cyclase (sGC) activators. Since NO-cGMP pathway exhibits a diverse role in cancer, we were interested in evaluating the role of the NO-receptor sGC and other components of the pathway in regulation of the tumor cell proliferation. Our results demonstrate a differential expression of the sGC subunits, NOS-1 and PKG mRNA and protein levels in various human cancer models.
View Article and Find Full Text PDFA series of pyridopyrimidine derivatives were synthesized and evaluated for their ability to inhibit cyclic nucleotide synthesis in the presence of stable toxin a of Escherichia coli. The structure activity relationships around the basic core structure were examined and examples with better activity and potentially better pharmacological properties are presented.
View Article and Find Full Text PDFHandb Exp Pharmacol
March 2009
Here, we review the early studies on cGMP, guanylyl cyclases, and cGMP-dependent protein kinases to facilitate understanding of development of this exciting but complex field of research encompassing pharmacology, biochemistry, physiology, and molecular biology of these important regulatory molecules.
View Article and Find Full Text PDFNitric oxide (NO) is involved in number of physiological and pathological events. Our previous studies demonstrated a differential expression of NO signaling components in mouse and human ES cells. Here, we demonstrate the effect of NO donors and soluble guanylyl cyclase (sGC) activators in differentiation of ES cells into myocardial cells.
View Article and Find Full Text PDFAcute secretory diarrhea induced by infection with enterotoxigenic strains of Escherichia coli involves binding of stable toxin (STa) to its receptor on the intestinal brush border, guanylyl cyclase type C (GC-C). Intracellular cGMP is elevated, inducing increase in chloride efflux and subsequent accumulation of fluid in the intestinal lumen. We have screened a library of compounds and identified a pyridopyrimidine derivatives {5-(3-bromophenyl)-1,3-dimethyl-5,11-dihydro-1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine-2,4,6-trione; BPIPP} as an inhibitor of GC-C that can suppress STa-stimulated cGMP accumulation by decreasing GC-C activation in intact T84 human colorectal carcinoma cells.
View Article and Find Full Text PDFWe have studied the effect of an activator of soluble guanylate cyclase 4,7-dimethyl-1,2,5-oxadiazolo[3,4-d]pyridazine 1,5,6-trioxide (FPTO) on the tone and nitrergic relaxation responses of mouse cavernous strips and compared FPTO to a known nitric oxide donor sodium nitroprusside. FPTO thiol-dependently generated nitric oxide measured by polarography and activated purified human soluble guanylate cyclase. FPTO and sodium nitroprusside relaxed the cavernous tissue in a concentration-dependent manner.
View Article and Find Full Text PDF