Publications by authors named "Alexander Y Karatayev"

Benthic invertebrates are important trophic links in food webs and useful bioindicators of environmental conditions, but long-term benthic organism abundance data across broad geographic areas are rare and historic datasets are often not readily accessible. This dataset provides densities of benthic macroinvertebrates collected from 1930 to 2019 during surveys in Lake Erie, a Laurentian Great Lake. The surveys were funded by the governments of the United States and Canada to investigate the status and changes in the benthic community.

View Article and Find Full Text PDF

We summarized existing knowledge on (the zebra mussel) and (the quagga mussel), including data on their taxonomy, systematics, evolution, life cycle, reproduction, feeding, growth and longevity, population dynamics, interspecific competition, habitat requirements, and distribution within and among waterbodies. We analyzed the history of spread of both species and the major pathways and vectors of their spread in Europe and North America. Special consideration was given to their ecological and economic impacts and their natural enemies, like waterfowl, fishes, and parasites, as well as the prevention of their introduction, early detection, control, and containment.

View Article and Find Full Text PDF

The Laurentian Great Lakes have experienced multiple anthropogenic changes in the past century, including cultural eutrophication, phosphorus abatement initiatives, and the introduction of invasive species. Lake Ontario, the most downstream lake in the system, is considered to be among the most impaired. The benthos of Lake Ontario has been studied intensively in the last six decades and can provide insights into the impact of environmental changes over time.

View Article and Find Full Text PDF

The ecosystem services approach to conservation is becoming central to environmental policy decision making. While many negative biological invasion-driven impacts on ecosystem structure and functioning have been identified, much less was done to evaluate their ecosystem services. In this paper, we focus on the often-overlooked ecosystem services provided by three notable exotic ecosystem engineering bivalves, the zebra mussel, the quagga mussel, and the golden mussel.

View Article and Find Full Text PDF

We examined three decades of changes in dreissenid populations in Lake Ontario and predation by round goby (). Dreissenids (almost exclusively quagga mussels, ) peaked in 2003, 13 years after arrival, and then declined at depths <90 m but continued to increase deeper through 2018. Lake-wide density also increased from 2008 to 2018 along with average mussel lengths and lake-wide biomass, which reached an all-time high in 2018 (25.

View Article and Find Full Text PDF

Benthic invertebrates are important trophic links in aquatic food webs and serve as useful bioindicators of environmental conditions because their responses integrate the effects of both water and sediment qualities. However, long-term data sets for benthic invertebrate assemblages across broad geographic areas are rare and, even if collected, historic data sets are often not readily accessible. This data set provides densities of benthic macroinvertebrates for all taxa collected during lake-wide surveys in Lake Ontario, a Laurentian Great Lake, from 1964 to 2018.

View Article and Find Full Text PDF

Dreissenid bivalves ( and ) are considered the most aggressive freshwater invaders inflicting profound ecological and economic impacts on the waterbodies that they colonize. Severity of these impacts depends on dreissenid population sizes which vary dramatically across space and time. We developed a novel method that analyzes video recorded using a Benthic Imaging System (BIS) in near real-time to assess dreissenid distribution and density across large waterbodies and tested it on Lake Erie.

View Article and Find Full Text PDF

Modification of flow regimes and habitat degradation are the strongest, most common, and often co-occurring human activities affecting riverine populations. Ongoing efforts to restore peak flow events found under pristine flow regimes could increase advection-driven dispersal for many species. In rivers with extensive habitat loss, increased advection could transport individuals from remnant populations into degraded downstream areas, causing restored flow regimes to decrease persistence of threatened species.

View Article and Find Full Text PDF

Lampsilis bracteata (Gould), the Texas Fatmucket, is a regional endemic species in the central Texas biogeographic province which is a candidate to be listed as threatened or endangered under the Endangered Species Act of 1973. Lampsilis bracteata is morphologically similar to the common species L. hydiana (Lea).

View Article and Find Full Text PDF

We used the results of seventeen years of Great Lakes benthic monitoring conducted by the U.S. EPA's Great Lakes National Program Office to describe the spatial and temporal patterns of benthic communities, assess their status, trends, and main drivers, and to infer the potential impact of these community changes on ecosystem functioning.

View Article and Find Full Text PDF

Due to cultural eutrophication and global climate change, an exponential increase in the number and extent of hypoxic zones in marine and freshwater ecosystems has been observed in the last few decades. Hypoxia, or low dissolved oxygen (DO) concentrations, can produce strong negative ecological impacts and, therefore, is a management concern. We measured biomass and densities of in Lake Erie, as well as bottom DO in 2014 using 19 high frequency data loggers distributed throughout the central basin to validate a three-dimensional hydrodynamic-ecological lake model.

View Article and Find Full Text PDF

It is well documented that the introduction of dreissenid bivalves in eutrophic lakes is usually associated with decreases in turbidity and total phosphorus concentrations in the water column, concomitant increases in water clarity, as well as other physical changes to habitat that may have cascading effects on other species in the invaded waterbody. In contrast, there is a paucity of data on the ecological ramifications of the elimination or decline of dreissenids due to pollution, bottom hypoxia, or other mechanisms. Using data collected by the U.

View Article and Find Full Text PDF

In contrast to marine systems where remote sensing methods in studies of benthic organisms have been widely used for decades, these methods have experienced limited use in studies of freshwater benthos due to the general lack of large epifauna. The situation has changed with the introduction of dreissenid bivalves capable of creating visible aggregations on lake bottoms into North American freshwaters in the 1980s and 1990s. The need for assessment of densities prompted exploration of videography as a potentially cost-effective tool.

View Article and Find Full Text PDF

The lower food webs of Lake Huron and Lake Michigan have experienced similar reductions in the spring phytoplankton bloom and summer populations of and cladocerans since the early 2000s. At the same time phosphorus concentrations have decreased and water clarity and silica concentrations have increased. Key periods of change, identified by using a method based on sequential t-tests, were 2003-2005 (Huron) and 2004-2006 (Michigan).

View Article and Find Full Text PDF

Understanding factors controlling the introduction and spread of species is crucial to improving the management of both natural populations and introduced species. The zebra mussel, Dreissena polymorpha, is considered the most aggressive freshwater invader in the Northern Hemisphere, and is a convenient model system for invasion biology, offering one of the best aquatic examples for examining the invasion process. We used data on 553 of the 1040 glacial lakes in the Republic of Belarus that were examined for the presence of zebra mussels.

View Article and Find Full Text PDF

Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D.

View Article and Find Full Text PDF

Changes in nutrient loading and invasive species are among the strongest human-driven disturbances in freshwater ecosystems, but our knowledge on how they affect the biodiversity of lakes is still limited. We conducted a detailed historical analysis of the mollusc community of Oneida Lake based on our comprehensive lakewide study in 2012 and previous surveys dating back to 1915. In the early 20th century, the lake had a high water clarity, with abundant macrophytes and benthic algae, and hosted the most diverse molluscan community in New York State, including 32 gastropod and 9 unionid species.

View Article and Find Full Text PDF

Zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena rostriformis bugensis) are the "poster children" of high-impact aquatic invasive species. In an effort to develop an effective and environmentally acceptable method to control their fouling of raw-water conduits, we have investigated the potential use of bacteria and their natural metabolic products as selective biological control agents. An outcome of this effort was the discovery of Pseudomonas fluorescens strain CL145A - an environmental isolate that kills these dreissenid mussels by intoxication (i.

View Article and Find Full Text PDF

Background: Freshwater bivalves in the order Unionoida are considered to be one of the most endangered groups of animals in North America. In Texas, where over 60% of unionids are rare or very rare, 15 species have been recently added to the state's list of threatened species, and 11 are under consideration for federal listing. Due to insufficient survey efforts in the past decades, however, primary data on current distribution and habitat requirement for most of these rare species are lacking, thus challenging their protection and management.

View Article and Find Full Text PDF

We report the results of a two-year study in the Svisloch River (Minsk, Belarus) on the dynamics of infection in Dreissena polymorpha by nematodes and three ciliate species Conchophthirus acuminatus, Ophryoglena sp., and Ancistrumina limnica. Although these endosymbionts were present in most of the samples, their prevalence and infection intensity differed significantly.

View Article and Find Full Text PDF

This study, conducted in the Dnieper-Bug Canal in Belarus, is the first to monitor the seasonal (June-November) dynamics of infection with the parasitic ciliate Ophryoglena sp. in a zebra mussel (Dreissena polymorpha) population. Mean population prevalence and intensity of infection varied, respectively, from 11 to 62% and from 0.

View Article and Find Full Text PDF