Deep learning (DL) tools developed on adult data sets may not generalize well to pediatric patients, posing potential safety risks. We evaluated the performance of TotalSegmentator, a state-of-the-art adult-trained CT organ segmentation model, on a subset of organs in a pediatric CT dataset and explored optimization strategies to improve pediatric segmentation performance. TotalSegmentator was retrospectively evaluated on abdominal CT scans from an external adult dataset (n = 300) and an external pediatric data set (n = 359).
View Article and Find Full Text PDF