Publications by authors named "Alexander W Weig"

Infections caused by methicillin-resistant (MRSA) are difficult to treat due to their resistance to many β-lactam antibiotics, and their highly coordinated excretion of virulence factors. One way in which MRSA accomplishes this is by responding to environmental stimuli using two-component systems (TCS). The ArlRS TCS has been identified as having a key role in regulating virulence in both systemic and local infections caused by .

View Article and Find Full Text PDF

Infections that stem from bacterial biofilms are difficult to eradicate. Within a biofilm state, bacteria are upwards of 1000-fold more resistant to conventional antibiotics, necessitating the development of alternative approaches to treat biofilm-based infections. One such approach is the development of small molecule adjuvants that can inhibit/disrupt bacterial biofilms.

View Article and Find Full Text PDF

Approximately 1.7 million Americans develop hospital associated infections each year, resulting in more than 98,000 deaths. One of the main contributors to such infections is the Gram-negative pathogen .

View Article and Find Full Text PDF

Synthesis of novel 4(3H)-quinazolinonyl aminopyrimidine derivatives has been achieved via quinazolinonyl enones which in turn were obtained from 2-acyl-4(3H)-quinazolinone. They have been assayed for biofilm inhibition against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative bacteria (Acinetobacter baumannii). The analogues with 2,4,6-trimethoxy phenyl, 4-methylthio phenyl, and 3-bromo phenyl substituents (5h, 5j & 5k) have been shown to inhibit biofilm formation efficiently in MRSA with IC values of 20.

View Article and Find Full Text PDF

Infections caused by multidrug-resistant (MDR) bacteria, particularly Gram-negative bacteria, are an escalating global health threat. Often clinicians are forced to administer the last-resort antibiotic colistin; however, colistin resistance is becoming increasingly prevalent, giving rise to the potential for a situation in which there are no treatment options for MDR Gram-negative infections. The development of adjuvants that circumvent bacterial resistance mechanisms is a promising orthogonal approach to the development of new antibiotics.

View Article and Find Full Text PDF