There is increasing interest in nonpharmacologic approaches to protect retinal ganglion cells (RGCs) after injury and enhance the efficacy of therapeutic molecules. Accumulating evidence demonstrates neuroprotection by the high-fat low-carbohydrate ketogenic diet (KD) in humans and animal models of neurologic diseases. However, no studies to date have examined whether the KD protects RGCs and promotes axonal regrowth after traumatic injury to the optic nerve (ON) or whether it increases efficacy of experimental proregenerative molecules.
View Article and Find Full Text PDFBackground: Diabetic retinopathy (DR) afflicts more than 93 million people worldwide and is a leading cause of vision loss in working adults. While DR therapies are available, early DR development may go undetected without treatment due to the lack of sufficiently sensitive tools. Therefore, early detection is critically important to enable efficient treatment before progression to vision-threatening complications.
View Article and Find Full Text PDFBackground: Optic nerve trauma caused by crush injury is frequently used for investigating experimental treatments that protect retinal ganglion cells (RGCs) and induce axonal regrowth. Retaining outer retinal light responses is essential for therapeutic rescue of RGCs after injury. However, whether optic nerve crush also damages the structure or function of photoreceptors has not been systematically investigated.
View Article and Find Full Text PDF