Publications by authors named "Alexander W Thomas"

The goal of this study was to investigate patterns of axonal injury in the first week after mild traumatic brain injury (mTBI). We performed a prospective cohort study of 20 patients presenting to the emergency department with mTBI, using 3.0T diffusion tensor MRI immediately after injury and again at 1 week post-injury.

View Article and Find Full Text PDF

Background: Screening mammography can detect early breast cancers and reduce subsequent cancer mortality. However, there is a lack of consensus as to when to discontinue screening. The absence of clear-cut guidelines on when not to screen means that many patients with advanced malignancies continue screening despite unclear benefit.

View Article and Find Full Text PDF

Conjugated oligoelectrolytes (COEs) with phenylenevinylene (PV) repeat units are known to spontaneously intercalate into cell membranes. Twelve COEs, including seven structures reported here for the first time, were investigated for the relationship between their membrane disrupting properties and structural modifications, including the length of the PV backbone and the presence of either a tetraalkylammonium or a pyridinium ionic pendant group. Optical characteristics and interactions with cell membranes were determined using UV-Vis absorption and photoluminescence spectroscopies, and confocal microscopy.

View Article and Find Full Text PDF

Cationic conjugated oligoelectrolytes (COEs) varying in length and structural features are compared with respect to their association with and their effect on cell surface charge as determined by zeta potential measurements. Regardless of structural features, at high staining concentrations COEs with longer molecular dimensions associate less, but neutralize the negative surface charge of to a greater degree than shorter COEs.

View Article and Find Full Text PDF

Conjugated phenylenevinylene oligoelectrolytes, which consist of a phenylenevinylene core equipped at each end with hydrophilic pendent groups, are shown to be good candidates for mammalian cell membrane staining. When used in the micromolar concentration range, they express low to moderate cell toxicity for selected regular and cancerous cell lines as tested for adherent and suspension cells.

View Article and Find Full Text PDF

A near-IR-emitting conjugated oligoelectrolyte (COE), ZCOE, was synthesized, and its photophysical features were characterized. The biological affinity of ZCOE is compared to that of an established lipid-membrane-intercalating COE, DSSN+, which has blue-shifted optical properties making it compatible for tracking preferential sites of accumulation. ZCOE exhibits diffuse staining of E.

View Article and Find Full Text PDF

Certain conjugated oligoelectrolytes (COEs) modify biological function by improving charge transfer across biological membranes as demonstrated by their ability to boost performance in bioelectrochemical systems. Molecular level understanding of the nature of the COE/membrane interactions is lacking. Thus, we investigated cell membrane perturbation by three COEs differing in the number of aromatic rings and presence of a fluorine substitution.

View Article and Find Full Text PDF

The interaction of the water-soluble conjugated polyelectrolyte (CPE) poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl} (PBS-PFP) (degree of polymerization, DP, ∼3-6) with various concentrations of a homologous series of oppositely charged amphiphilic phenylenevinylene oligomers was investigated in water:dioxane mixtures and in aqueous micellar solutions of the non-ionic surfactant n-dodecylpentaoxyethylene glycol ether. The excellent spectral overlap between the CPE fluorescence and the conjugated oligoelectrolyte (COE) absorption indicates that energy transfer between these is a highly favored process, and can be tuned by changing the COE chain length. This is supported by time-resolved fluorescence data.

View Article and Find Full Text PDF

Variation in conjugated oligoelectrolyte (COE) repeat units is shown to affect the rate of COE insertion into mammalian membrane patches and membrane patch stabilities. These findings suggest that it is possible to find COE structures that do not destroy membranes while at the same time allow for more facile transmembrane movement of ions/substrates.

View Article and Find Full Text PDF

The amphiphilic properties of conjugated oligoelectrolytes (COE) and their sensitivity to the polarity of their microenvironment lead to interesting aggregation behavior, in particular in their interaction with surfactants. Photoluminescence (PL) spectroscopy, liquid-phase atomic force microscopy, small-angle neutron scattering, small-angle X-ray scattering, and grazing-incidence X-ray diffraction were used to examine interactions between cationic p-phenylene vinylene based oligoelectrolytes and surfactants. These techniques indicate the formation of COE/surfactant aggregates in aqueous solution, and changes in the photophysical properties are observed when compared to pure aqueous solutions.

View Article and Find Full Text PDF

It is important to tailor biotic-abiotic interfaces in order to maximize the utility of bioelectronic devices such as microbial fuel cells (MFCs), electrochemical sensors and bioelectrosynthetic systems. The efficiency of electron-equivalent extraction (or injection) across such biotic-abiotic interfaces is dependent on the choice of the microbe and the conductive electrode material. In this contribution, we show that spontaneous intercalation of a conjugated oligoelectrolyte, namely 4,4'-bis(4'-(N,N-bis(6''-(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbene tetraiodide (DSSN+), into the membranes of Escherichia coli leads to an increase in current generation in MFCs containing carbon-based electrodes.

View Article and Find Full Text PDF

A series of conjugated oligoelectrolytes with structural variations is used to stain E. coli. By taking advantage of a high-throughput screening platform that incorporates gold anodes, it is found that MFCs with COE-modified E.

View Article and Find Full Text PDF