Publications by authors named "Alexander W Drong"

Article Synopsis
  • RNA splicing factors often mutate in blood disorders like myelodysplastic syndrome (MDS), affecting how blood cells develop, but the role of these mutations in blood formation is still not fully understood.
  • Researchers used a new method, GoT-Splice, which combines gene profiling and advanced single-cell analysis to study how mutations in a specific splicing factor (SF3B1) influence blood progenitor cells.
  • Their findings showed that SF3B1 mutations lead to abnormal splicing patterns and an increase in specific blood cell types before MDS is clinically evident, highlighting the importance of understanding these mutations in early disease progression.
View Article and Find Full Text PDF

Genome-wide association studies in the fields of reproductive medicine and endocrinology are yielding robust genetic variants associated with disease. Integrated genomic, transcriptomic, and epigenomic molecular profiling studies are common methodologies used to understand the biologic pathways perturbed by these variants. However, molecular profiling resources do not include the tissue most relevant to many female reproductive traits, the endometrium, while the parameters influencing variability of results from its molecular profiling are unclear.

View Article and Find Full Text PDF

To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass.

View Article and Find Full Text PDF
Article Synopsis
  • Leptin is a hormone produced by fat cells that reflects body fat levels, and while rare genetic mutations cause leptin deficiency leading to obesity, common genetic variants affecting leptin have not been found.
  • A genome-wide association study with over 52,000 participants identified five genetic loci linked to circulating leptin levels, with most associations remaining even after adjusting for body mass index (BMI).
  • The study highlights the role of adipogenin in the SLC32A1 locus as a key factor in leptin regulation, offering new insights into how leptin affects body weight and metabolism.
View Article and Find Full Text PDF

We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.

View Article and Find Full Text PDF

Obesity and type 2 diabetes (T2D) are common and complex metabolic diseases, which are caused by an interchange between environmental and genetic factors. Recently, a number of large-scale genome-wide association studies (GWAS) have improved our knowledge of the genetic architecture and biological mechanisms of these diseases. Currently, more than ~250 genetic loci have been found for monogenic, syndromic, or common forms of T2D and/or obesity-related traits.

View Article and Find Full Text PDF

DNA methylation plays a fundamental role in the regulation of the genome, but the optimal strategy for analysis of genome-wide DNA methylation data remains to be determined. We developed a comprehensive analysis pipeline for epigenome-wide association studies (EWAS) using the Illumina Infinium HumanMethylation450 BeadChip, based on 2,687 individuals, with 36 samples measured in duplicate. We propose new approaches to quality control, data normalisation and batch correction through control-probe adjustment and establish a null hypothesis for EWAS using permutation testing.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity has a genetic component and is linked to various diseases, prompting a large-scale study involving over 339,000 participants to explore its genetic basis through BMI analysis.
  • The study identified 97 loci associated with BMI, with 56 being new discoveries, and found that these loci explain about 2.7% of the variation in BMI, while common genetic variations contribute over 20%.
  • Results indicate that the central nervous system plays a significant role in obesity risk and point to new genes and pathways related to brain function, metabolism, and fat development.
View Article and Find Full Text PDF

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)).

View Article and Find Full Text PDF

Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.

View Article and Find Full Text PDF

Genetic variants that associate with DNA methylation at CpG sites (methylation quantitative trait loci, meQTLs) offer a potential biological mechanism of action for disease associated SNPs. We investigated whether meQTLs exist in abdominal subcutaneous adipose tissue (SAT) and if CpG methylation associates with metabolic syndrome (MetSyn) phenotypes. We profiled 27,718 genomic regions in abdominal SAT samples of 38 unrelated individuals using differential methylation hybridization (DMH) together with genotypes at 5,227,243 SNPs and expression of 17,209 mRNA transcripts.

View Article and Find Full Text PDF