This article presents, for the first time, a comparative analysis of the emission characteristics of large-area field-effect cathodes (LAFE) based on carbon nanotubes (CNTs) of various morphologies according to key parameters using a unique computerized technique. The work presents a description of a technology for creating various CNT arrays and their comprehensive structure characterization. All CNT arrays synthesized by the catalytic PECVD method on a silicon substrate showed a high degree of chemical purity under the presented technological conditions.
View Article and Find Full Text PDFThe structural and electro-thermophysical characteristics of organosilicon elastomers modified with multilayer carbon nanotubes (MWCNTs) synthesized on Co-Mo/AlO-MgO and metallic (Cu or Ni) microparticles have been studied. The structures were analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The main focus of this study was the influence of metallic dispersed fillers on the resistance of a modified elastomer with Cu and Ni to the degradation of electrophysical parameters under the action of applied electrical voltage.
View Article and Find Full Text PDFThe turn to hydrogen as an energy source is a fundamentally important task facing the global energetics, aviation and automotive industries. This step would reduce the negative man-made impact on the environment on the one hand, and provide previously inaccessible power modes and increased resources for technical systems, predetermining the development of an absolutely new life cycle for important areas of technology, on the other. The most important aspect in this case is the development of next-generation technologies for hydrogen industry waste management that will definitely reduce the negative impact of technology on the environment.
View Article and Find Full Text PDF