Publications by authors named "Alexander V Popov"

DNA nanotechnology has broad applications in biomedical drug delivery and programmable materials. Characterization of the self-assembly of DNA origami and quantum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchical nanostructures can be controlled by programming the binding site number and their positions on DNA origami.

View Article and Find Full Text PDF

We address the challenge of representativity and dynamical consistency when unbonded fine-grained particles are collected together into coarse-grained particles. We implement a hybrid procedure for identifying and tracking the underlying fine-grained particles─e.g.

View Article and Find Full Text PDF

The reaction of butyryl chloride with ethynylbenzene in the presence of AlCl afforded a mixture of the Z/E-isomers of 1-chloro-2-phenylhex-1-en-3-one. 1,2-Diphenylethyne under these conditions gave a novel polycarbocycle core, 6aH-benzo[a]fluorene. The chemical structure of 11-chloro-5,6-diphenyl-6a-propyl-6aH-benzo[a]fluorene was established by means of IE-MS, H, C NMR, COSY, HSQC, HMBC, and 2D INADEQUATE technique.

View Article and Find Full Text PDF

Base excision DNA repair (BER) is an important process used by all living organisms to remove nonbulky lesions from DNA. BER is usually initiated by DNA glycosylases that excise a damaged base leaving an apurinic/apyrimidinic (AP) site, and an AP endonuclease then cuts DNA at the AP site, and the repair is completed by correct nucleotide insertion, end processing, and nick ligation. It has emerged recently that the BER machinery, in addition to genome protection, is crucial for active epigenetic demethylation in the vertebrates.

View Article and Find Full Text PDF

Aerobic respiration generates reactive oxygen species (ROS), which can damage nucleic acids, proteins and lipids. A number of transcription factors (TFs) contain redox-sensitive cysteine residues at their DNA-binding sites, hence ROS-induced thiol oxidation strongly inhibits their recognition of the cognate DNA sequences. Major human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/APEX1/HAP-1), referred also as a redox factor 1 (Ref-1), stimulates the DNA binding activities of the oxidized TFs such as AP-1 and NF-κB.

View Article and Find Full Text PDF

In protein evolution, functionally important intramolecular interactions, such as polar bridges or hydrophobic interfaces, tend to be conserved. We have analyzed coevolution of physicochemical properties in pairs of amino acid residues in the formamidopyrimidine-DNA glycosylase (Fpg) protein family, identified three conserved polar bridges (Arg54-Glu131, Gln234-Arg244, and Tyr170-Ser208 in the E. coli protein) located in known functional regions of the protein, and analyzed their roles by site-directed mutagenesis.

View Article and Find Full Text PDF

Mammalian nucleotide excision repair (NER) eliminates the broadest diversity of bulky lesions from DNA with wide specificity. However, the double incision efficiency for structurally different adducts can vary over several orders of magnitude. Therefore, great attention is drawn to the question of the relationship among structural properties of bulky DNA lesions and the rate of damage elimination.

View Article and Find Full Text PDF

Background: Formamidopyrimidine-DNA glycosylase (Fpg) removes abundant pre-mutagenic 8-oxoguanine (oxoG) bases from DNA through nucleophilic attack of its N-terminal proline at C1' of the damaged nucleotide. Since oxoG efficiently pairs with both C and A, Fpg must excise oxoG from pairs with C but not with A, otherwise a mutation occurs. The crystal structures of several Fpg-DNA complexes have been solved, yet no structure with A opposite the lesion is available.

View Article and Find Full Text PDF

8-oxoguanine is one of the most abundant and impactful oxidative DNA lesions. However, the reasons underlying its effects, especially those not directly explained by the altered base pairing ability, are poorly understood. We report the effect of the lesion on the action of EcoRI, a widely used restriction endonuclease.

View Article and Find Full Text PDF

The assembly of monomeric constituents into molecular superstructures through sequential-arrival processes has been simulated and theoretically characterized. When the energetic interactions allow for complete overlap of the particles, the model is equivalent to that of the sequential absorption of soft particles on a surface. In the present work, we consider more general cases by including arbitrary aggregating geometries and varying prescriptions of the connectivity network.

View Article and Find Full Text PDF

The dynamical properties of a system of soft rods governed by stochastic hard collisions (SHCs) have been determined over a varying range of softness using molecular dynamics simulations in one dimension and analytic theory. The SHC model allows for interpenetration of the system's constituent particles in the simulations, generating overlapping clustering behavior analogous to the spatial structures observed in systems governed by deterministic bounded potentials. Through variation of an assigned softness parameter δ, the limiting ranges of intermolecular softness are bridged, connecting the limiting ensemble behavior from hard to ideal (completely soft).

View Article and Find Full Text PDF

The surface coverage of coarse-grained macromolecules bound to a solid substrate is not simply proportional to the two-dimensional number density because macromolecules can overlap. As a function of the overlap probability δ, we have developed analytical formulas and computational models capable of characterizing this nonlinear relationship. For simplicity, we ignore site-site interactions that would be induced by length-scale mismatches between binding sites and the radius of gyration of the incident coarse-grained macromolecular species.

View Article and Find Full Text PDF

The structure and assembly of soft particles is difficult to characterize because their interpenetrability allows them to be packed at ever higher density albeit with an increasing penalty in energy and/or pressure. Alternatively, the use of impenetrable particles (such as hard spheres) as a reference model for soft particles can fail because the packing densities are limited by the impossibility of complete space filling. We recently introduced the stochastic penetration algorithm (SPA) so as to allow for the computationally efficient integration of hard sphere models while including overlaps seen in soft interactions [Craven et al.

View Article and Find Full Text PDF

8-Oxoguanine-DNA glycosylase (OGG1) removes premutagenic lesion 8-oxoguanine (8-oxo-G) from DNA and then nicks the nascent abasic (apurinic/apyrimidinic) site by β-elimination. Although the structure of OGG1 bound to damaged DNA is known, the dynamic aspects of 8-oxo-G recognition are not well understood. To comprehend the mechanisms of substrate recognition and processing, we have constructed OGG1 mutants with the active site occluded by replacement of Cys-253, which forms a wall of the base-binding pocket, with bulky leucine or isoleucine.

View Article and Find Full Text PDF

The occupied volume of a penetrable hard rod (HR) system in one dimension is probed through the use of molecular dynamics simulations. In these dynamical simulations, collisions between penetrable rods are governed by a stochastic penetration algorithm (SPA), which allows for rods to either interpenetrate with a probability δ, or collide elastically otherwise. The limiting values of this parameter, δ = 0 and δ = 1, correspond to the HR and the ideal limits, respectively.

View Article and Find Full Text PDF

Most of existing software for analysis of molecular dynamics (MD) simulation results is based on command-line, script-guided processes that require the researchers to have an idea about programming language constructions used, often applied to the one and only product. Here, we describe an open-source cross-platform program, MD Trajectory Reader and Analyzer (MDTRA), that performs a large number of MD analysis tasks assisted with a graphical user interface. The program has been developed to facilitate the process of search and visualization of results.

View Article and Find Full Text PDF

The excited-state proton transfer (ESPT) reaction of the "super"photoacid N-methyl-6-hydroxyquinolinium (MHQ) was studied using both fluorescence upconversion and time-correlated single photon counting (TCSPC) techniques. The ultrafast ESPT kinetics were investigated in various alcohols and water and determined to be solvent-controlled. The ESPT temperature dependence of MHQ was also studied in various alcohols and compared to that observed for another "super"photoacid, 5,8-dicyano-2-naphthol (DCN2).

View Article and Find Full Text PDF

We have studied an excited state proton transfer (ESPT) from the cationic "super" photoacid N-methyl 6-hydroxyquinolinium perfluorobutane sulfonate to non-aqueous solvents using picosecond and nanosecond time-resolved fluorescence spectroscopy. Upon the photoinduced adiabatic deprotonation from the hydroxyl moiety, a quinolinium zwitterion with a highly anisotropic charge distribution is formed. Due to the complexity of the resultant photodissociated system, the typical description of the reversible ESPT within the framework of the Spherically Symmetric Diffusion Problem (SSDP) is not possible.

View Article and Find Full Text PDF

The nonequilibrium dynamics of a probe in a driven binary mixture of effective hard-sphere particles has been measured computationally in molecular dynamics simulations so as to obtain a better understanding of the energy and spatial correlations that persist through the coupling between the binary components. The driving of the particles is manifested through a change of the effective volume (or equivalently, diameter of the hard spheres) and each component is assumed to have a different time-dependent profile. Such a driving is possible in a suspension of one-component colloidal mesogens, for example, in which the particle volume has been seen to change with pH or temperature changes in the solution.

View Article and Find Full Text PDF

Composition-dependent solvation dynamics around the probe coumarin 153 (C153) have been explored in CO2-expanded methanol and acetone with molecular dynamics (MD) simulations. Solvent response functions are biexponential with two distinct decay time scales: a rapid initial decay (∼0.1 ps) and a long relaxation process.

View Article and Find Full Text PDF

Solvation of heterocyclic amines in CO(2)-expanded methanol (MeOH) has been explored with UV/vis spectroscopy and molecular dynamics (MD) simulations. A synergistic study of experiments and simulations allows exploration of solute and solvent effects on solvation and the molecular interactions that affect absorption. MeOH-nitrogen hydrogen bonds hinder the n-pi* transition; however, CO(2) addition causes a blue shift relative to MeOH because of Lewis acid/base interactions with nitrogen.

View Article and Find Full Text PDF

Local compositions in supercritical and near-critial fluids may differ substantially from bulk compositions, and such differences have important effects on spectroscopic observations, phase equilibria, and chemical kinetics. Here, we compare such determinations around a solute probe dissolved in CO2-expanded methanol and acetone at 25 degrees C from solvatochromic experiments with molecular dynamics simulations. UV/vis and steady-state fluorescence measurements of the dye Coumarin 153 in the expanded liquid phase indicate preferential solvation in both the S0 and S1 states by the organic species.

View Article and Find Full Text PDF

The laws of thermodynamics provide a clear concept of the temperature for an equilibrium system in the continuum limit. Meanwhile, the equipartition theorem allows one to make a connection between the ensemble average of the kinetic energy and the uniform temperature. When a system or its environment is far from equilibrium, however, such an association does not necessarily apply.

View Article and Find Full Text PDF