Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells).
View Article and Find Full Text PDFAdenovirus (Ad)-mediated transduction of dendritic cells (DC) is inefficient because of the lack of the primary Ad receptor, CAR. DC infection with Ad targeted to the CD40 results in increased gene transfer. The current report describes further development of the CD40-targeting approach using an adapter molecule that bridges the fiber of the Ad5 to CD40 on mouse DC.
View Article and Find Full Text PDFMost viruses exploit a variety of host cellular proteins as primary cellular attachment receptors in the context of successful execution of infection. Furthermore, many viral agents have evolved precise mechanisms to subvert host immune recognition to achieve persistence. Herein we present data indicating that adenovirus (Ad) serotype 3 utilizes CD80 (B7.
View Article and Find Full Text PDFPurpose: CD40, a member of the tumor necrosis factor receptor superfamily, is widely expressed on various cell types in addition to hematopoietic cells. Recent studies show that CD40 expression is related to several carcinomas, although its role in cancer pathobiology is unknown. In this study, we demonstrate the expression of CD40 on several ovarian carcinoma cell lines and the ability of CD40 to mediate targeted adenoviral infection in vitro.
View Article and Find Full Text PDF