Publications by authors named "Alexander V Nemukhin"

The photochemically active sites of the proteins sfGFP and Venus, members of the green fluorescent protein (GFP) family, contain a non-canonical amino acid residue -azidophenylalanine (azF) instead of Tyr66. The light-induced decomposition of azF at these sites leads to the formation of reactive arylnitrene (nF) intermediates followed by the formation of phenylamine-containing chromophores. We report the first study of the reaction mechanism of the reduction of the arylnitrene intermediates in sfGFP and Venus using molecular modeling methods.

View Article and Find Full Text PDF

We report the results of computational modeling of the reactions of the SARS-CoV-2 main protease (M) with four potential covalent inhibitors. Two of them, carmofur and nirmatrelvir, have shown experimentally the ability to inhibit M. Two other compounds, X77A and X77C, were designed computationally in this work.

View Article and Find Full Text PDF

We report the results of a computational study of the mechanism of the light-induced chemical reaction of chromophore hydration in the fluorescent protein Dreiklang, responsible for its switching from the fluorescent ON-state to the dark OFF-state. We explore the relief of the charge-transfer excited-state potential energy surface in the ON-state to locate minimum energy conical intersection points with the ground-state energy surface. Simulations of the further evolution of model systems allow us to characterize the ground-state reaction intermediate tentatively suggested in the femtosecond studies of the light-induced dynamics in Dreiklang and finally to arrive at the reaction product.

View Article and Find Full Text PDF

Modern quantum-based methods are employed to model interaction of the flavin-dependent enzyme RutA with the uracil and oxygen molecules. This complex presents the structure of reactants for the chain of chemical reactions of monooxygenation in the enzyme active site, which is important in drug metabolism. In this case, application of quantum-based approaches is an essential issue, unlike conventional modeling of protein-ligand interaction with force fields using molecular mechanics and classical molecular dynamics methods.

View Article and Find Full Text PDF

This work explores the level of transparency in reporting the details of computational protocols that is required for practical reproducibility of quantum mechanics/molecular mechanics (QM/MM) simulations. Using the reaction of an essential SARS-CoV-2 enzyme (the main protease) with a covalent inhibitor (carmofur) as a test case of chemical reactions in biomolecules, we carried out QM/MM calculations to determine the structures and energies of the reactants, the product, and the transition state/intermediate using analogous QM/MM models implemented in two software packages, NWChem and Q-Chem. Our main benchmarking goal was to reproduce the key energetics computed with the two packages.

View Article and Find Full Text PDF

We report the results of a computational study of the hydrolysis reaction mechanism of -acetyl-l-aspartyl-l-glutamate (NAAG) catalyzed by glutamate carboxypeptidase II. Analysis of both mechanistic and electronic structure aspects of this multistep reaction is in the focus of this work. In these simulations, model systems are constructed using the relevant crystal structure of the mutated inactive enzyme.

View Article and Find Full Text PDF

We describe a model for spectral tuning in red fluorescent proteins (RFPs) based on the relation between an electronic structure descriptor, the dipole moment variation upon excitation (DMV), and the excitation energy of a protein. This approach aims to overcome the problem of accurate prediction of excitation energies in RFPs, which span a very narrow window of band maxima. The latter roughly corresponds to the energy range of 0.

View Article and Find Full Text PDF

The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets.

View Article and Find Full Text PDF

The role of protonation states of the chromophore and its neighboring amino acid side chains of the reversibly switching fluorescent protein rsEGFP2 upon photoswitching is characterized by molecular modeling methods. Numerous conformations of the chromophore-binding site in computationally derived model systems are obtained using the quantum chemistry and QM/MM approaches. Excitation energies are computed using the extended multiconfigurational quasidegenerate perturbation theory (XMCQDPT2).

View Article and Find Full Text PDF

The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets.

View Article and Find Full Text PDF

We report the results of calculations of the Gibbs energy profiles of the guanosine triphosphate (GTP) hydrolysis by the Arl3-RP2 protein complex using molecular dynamics (MD) simulations with ab initio type QM/MM potentials. The chemical reaction of GTP hydrolysis to guanosine diphosphate (GDP) and inorganic phosphate (Pi) is catalyzed by GTPases, the enzymes, which are responsible for signal transduction in live cells. A small GTPase Arl3, catalyzing the GTP → GDP reaction in complex with the activating protein RP2, constitute an essential part of the human vision cycle.

View Article and Find Full Text PDF

Fluorescent proteins (FPs) have revolutionised the life sciences, but the mechanism of chromophore maturation is still not fully understood. Here we show that incorporation of a photo-responsive non-canonical amino acid within the chromophore stalls maturation of Venus, a yellow FP, at an intermediate stage; a crystal structure indicates the presence of O located above a dehydrated enolate form of the imidazolone ring, close to the strictly conserved Gly67 that occupies a twisted conformation. His148 adopts an "open" conformation so forming a channel that allows O access to the immature chromophore.

View Article and Find Full Text PDF

We report the first computational characterization of an optogenetic system composed of two photosensing BLUF (blue light sensor using flavin adenine dinucleotide) domains and two catalytic adenylyl cyclase (AC) domains. Conversion of adenosine triphosphate (ATP) to the reaction products, cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi), catalyzed by ACs initiated by excitation in photosensing domains has emerged in the focus of modern optogenetic applications because of the request in photoregulated enzymes that modulate cellular concentrations of signaling messengers. The photoactivated AC from the soil bacterium sp.

View Article and Find Full Text PDF

An enhanced interest in the phytochrome-based fluorescent proteins is explained by their ability to absorb and emit light in the far-red and infra-red regions particularly suitable for bioimaging. The fluorescent protein IFP1.4 was engineered from the chromophore-binding domain of a bacteriophytochrome in attempts to increase the fluorescence quantum yield.

View Article and Find Full Text PDF

We present the results of high-level electronic structure and dynamics simulations of the photoactive protein Dreiklang. With the goal of understanding the details of the Dreiklang photocycle, we carefully characterize the excited states of the ON- and OFF-forms of Dreiklang. The key finding of our study is the existence of a low-lying excited state of a charge-transfer character in the neutral ON form and that population of this state, which is nearly isoenergetic with the locally excited bright state, initiates a series of steps that ultimately lead to the formation of the hydrated dark chromophore (OFF state).

View Article and Find Full Text PDF

We propose a quantitative structure-property relationship (QSPR) model for prediction of spectral tuning in cyan, green, orange, and red fluorescent proteins, which are engineered by motifs of the green fluorescent protein. Protein variants, in which their chromophores are involved in the π-stacking interaction with amino acid residues tyrosine, phenylalanine, and histidine, are prospective markers useful in bioimaging and super-resolution microscopy. In this work, we constructed training sets of the π-stacked complexes of four fluorescent protein chromophores (of the green, orange, red, and cyan series) with various substituted benzenes and imidazoles and tested the use of dipole moment variation upon excitation (DMV) as a descriptor to evaluate the vertical excitation energies in these systems.

View Article and Find Full Text PDF

A dynamical approach is proposed to discriminate between reactive (rES) and nonreactive (nES) enzyme-substrate complexes taking the SARS-CoV-2 main protease (Mpro) as an important example. Molecular dynamics simulations with the quantum mechanics/molecular mechanics potentials (QM(DFT)/MM-MD) followed by the electron density analysis are employed to evaluate geometry and electronic properties of the enzyme with different substrates along MD trajectories. We demonstrate that mapping the Laplacian of the electron density and the electron localization function provides easily visible images of the substrate activation that allow one to distinguish rES and nES.

View Article and Find Full Text PDF

We report the results of computational modeling of a three-dimensional all-atom structure of the membrane-associated protein encoded by the gene, aspartate -acetyltransferase, which is essential for brain synthesis of -acetyl-l-aspartate (NAA). The lack of experimentally derived three-dimensional structures of NAT8L poses one of the obstacles in studies of the mechanism of NAA formation and understanding the precise role of NAA in neurological disorders. We apply a computational protocol employing the contact map prediction, folding, homology modeling, and refinement to obtain a structure of NAT8L with the aspartate and acetyl coenzyme A cofactors in the protein molecule.

View Article and Find Full Text PDF

The use of selective covalent inhibitors with low binding affinity and high reactivity with the target enzyme is a promising way to solve a long-standing problem of the "undruggable" RAS-like proteins. Specifically, compounds of the ARS family that prevent the activation of the GDP-bound G12C mutant of Kirsten RAS (KRAS) are in the focus of recent experimental research. We report the first computational characterization of the entire reaction mechanism of the covalent binding of ARS-853 to the KRASG12C·GDP complex.

View Article and Find Full Text PDF

The unique properties of the photoswitchable protein Dreiklang are attributed to a reversible hydration/dehydration reaction at the imidazolinone ring of the chromophore. Recovery of the fluorescent state, which is associated with a chemical reaction of the chromophore's dehydration, is an important part of the photocycle of this protein. Here we characterize the fluorescent (ON) and nonfluorescent (OFF) states of Dreiklang and simulate the thermal recovery reaction OFF → ON using computational approaches.

View Article and Find Full Text PDF

Remarkable success in engineering novel efficient biomarkers based on fluorescent and photoactive proteins provokes a question of whether computational modeling of their properties can contribute to this important field. In this Feature Article, we analyze selected papers devoted to computer simulations of three types of photoactive systems: the green fluorescent protein and its derivatives, the flavin-binding proteins, and the phytochrome domains. The main emphasis is on structures, optical spectra, and chemical reactions in the chromophore-containing pockets.

View Article and Find Full Text PDF

The mechanism of the deceptively simple reaction of guanosine triphosphate (GTP) hydrolysis catalyzed by the cellular protein Ras in complex with the activating protein GAP is an important issue because of the significance of this reaction in cancer research. We show that molecular modeling of GTP hydrolysis in the Ras-GAP active site reveals a diversity of mechanisms of the intrinsic chemical reaction depending on molecular groups at position 61 in Ras occupied by glutamine in the wild-type enzyme. First, a comparison of reaction energy profiles computed at the quantum mechanics/molecular mechanics (QM/MM) level shows that an assignment of the Gln61 side chain in the wild-type Ras either to QM or to MM parts leads to different scenarios corresponding to the glutamine-assisted or the substrate-assisted mechanisms.

View Article and Find Full Text PDF

A computer-designed mutant of human butyrylcholinesterase (BChE), N322E/E325G, with a novel catalytic triad was made. The catalytic triad of the wild-type enzyme (S198·H438·E325) was replaced by S198·H438·N322E in silico. Molecular dynamics for 1.

View Article and Find Full Text PDF

We present the results of molecular modeling of conformational changes in the Y231C and F295S mutants of human aspartoacylase (hAsp), which allow us to propose a mechanism of allosteric regulation of enzyme activity of these protein variants. The hAsp enzyme hydrolyzes one of the most abundant amino acid derivatives in the brain, N-acetyl-aspartate. It is important to understand the reasons for diminishing activity of the mutated enzymes, which is crucial for Canavan disease patients bearing the mutated gene.

View Article and Find Full Text PDF

The iLOV protein is a promising member of the class of flavin mononucleotide (FMN) based fluorescent proteins (FbFPs). It is becoming a popular tool for bioanalytical applications and bioimaging as a competitor of the well-known green fluorescent protein and its analogues. The main limitation of FbFPs is that all the members have close values of their absorption and emission band maxima.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionth8t546sipado51ju7319ecir0brvhoh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once