Physical adsorption is one of the most widely used techniques to characterize porous materials because it is reliable and able to assess micro- and mesopores within one approach. Challenges and open questions persist in characterizing disordered and hierarchically structured porous materials. This study introduces a pore network model aimed at enhancing the textural characterization of nanoporous materials.
View Article and Find Full Text PDFPhase behavior of nanoconfined fluids adsorbed in metal-organic frameworks is of paramount importance for the design of advanced materials for energy and gas storage, separations, electrochemical devices, sensors, and drug delivery, as well as for the pore structure characterization. Phase transformations in adsorbed fluids often involve long-lasting metastable states and hysteresis that has been well-documented in gas adsorption-desorption and nonwetting fluid intrusion-extrusion experiments. However, theoretical prediction of the observed nanophase behavior remains a challenging problem.
View Article and Find Full Text PDFTriply periodic minimal surfaces (TPMS) inspired by nature serve as a foundation for developing novel nanomaterials, such as templated silicas, graphene sponges, and schwarzites, with customizable optical, poroelastic, adsorptive, catalytic, and other properties. Computer simulations of reactions on TPMS using reactive intermolecular potentials hold great promise for constructing and screening potential TPMS with the desired properties. Here, we developed an off-lattice, surface-constrained Metropolis Monte Carlo (SC-MMC) algorithm that utilized a temperature quench process.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are nanoporous crystals which are widely used as selective adsorbents, separation membranes, catalysts, gas and energy storage media, and drug delivery vehicles. The unique adsorption and transport properties of MOFs are determined by their complex three-dimensional (3D) networks of pores, cages, and channels that differ in size, shape, and chemical composition. While the morphological structure of MOF crystals is known, practical MOF materials are rarely ideal crystals.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2023
COVID-19 is transmitted by airborne particles containing virions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus virions represent nanoparticles enveloped by a lipid bilayer decorated by a "crown" of Spike protein protrusions. Virus transmission into the cells is induced by binding of Spike proteins with ACE2 receptors of alveolar epithelial cells.
View Article and Find Full Text PDFThe hase behavior of confined fluids adsorbed in nanopores differs significantly from their bulk counterparts and depends on the chemical and structural properties of the confining structures. In general, phase transitions in nanoconfined fluids are reflected in stepwise adsorption isotherms with a pronounced hysteresis. Here, we show experimental evidence and an interpretation of the reversible stepwise adsorption isotherm which is observed when methane is adsorbed in the rigid, crystalline metal-organic framework IRMOF-1 (MOF-5).
View Article and Find Full Text PDFCOVID-19 is transmitted by inhaling SARS-CoV-2 virions, which are enveloped by a lipid bilayer decorated by a "crown" of Spike protein protrusions. In the respiratory tract, virions interact with surfactant films composed of phospholipids and cholesterol that coat lung airways. Here, we explore by using coarse-grained molecular dynamics simulations the physico-chemical mechanisms of surfactant adsorption on Spike proteins.
View Article and Find Full Text PDFThe morphology and stability of surfactant-loaded polyelectrolyte gels are of great interest for a variety of personal care, cosmetic, and pharmaceutical products. However, the mechanisms of surfactant interactions with gel-forming polymers are poorly understood and experimentally challenging. The aim of this work is to explore the specifics of surfactant absorption within polyelectrolyte gels drawing on the examples of typical non-ionic octaethylene glycol monooctyl ether (CE) and anionic sodium dodecyl sulfate (SDS) surfactants and polyacrylic acid modified with hydrophobic sidechains mimicking the practically important Carbopol polymer.
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2021
Dissipative particle dynamics (DPD) is one of the most efficient mesoscale coarse-grained methodologies for modeling soft matter systems. Here, we comprehensively review the progress in theoretical formulations, parametrization strategies, and applications of DPD over the last two decades. DPD bridges the gap between the microscopic atomistic and macroscopic continuum length and time scales.
View Article and Find Full Text PDFMorphological and transport properties of hydrated metal-substituted Nafion membranes doped with metal ions of different valency and coordination strength are explored using coarse-grained dissipative particle dynamics simulations. To incorporate the effects of metal-polymer complexation, we introduce a novel metal ion complexation model, in which the charged central metal ion is surrounded by dummy sites that coordinate with ligands. The model parameters are determined by matching the metal-ligand running coordination numbers and the diffusion coefficients obtained from atomistic simulations and/or experiments.
View Article and Find Full Text PDFHypothesis: Suspensions of nanoporous particles in non-wetting fluids (lyophobic nanoporous suspensions, LPNPS) are explored as energy absorbing materials for shock absorbers, bumpers, and energy storage. Upon application of pressure, the non-wetting fluid invades the pores transforming the impact energy into the interfacial energy that can be stored and released on demand.
Experiments: Here, we present a comprehensive experimental study of the dynamics of LPNPS compression within a wide range of shock impact energy for three types of mesoporous materials (Libersorb 23, Polysorb-1, and Silochrome-1.
Lipid membranes supported on solid surfaces and nanoparticles find multiple applications in industrial and biomedical technologies. Here, we explore the mechanisms of the interactions of lipid membranes with nanostructured surfaces with deposited nanoparticles and explain the characteristic particle size dependence of the uniformity and stability of lipid coatings observed . Simulations are performed to demonstrate the specifics of 1,2-dimyristoyl--glycero-3-phosphocholine (DMPC) lipid membrane adhesion to hydrophilic and hydrophobic nanoparticles ranging in size from 1.
View Article and Find Full Text PDFAdsorption of surfactants at gas-liquid interfaces that causes reduction in the surface tension is a classical problem in colloid and interface science with multiple practical applications in oil and gas recovery, separations, cosmetics, personal care, and biomedicine. Here, we develop an original coarse-grained model of the liquid-gas interface within the conventional dissipative particle dynamics (DPD) framework with the goal of quantitatively predicting the surface tension in the presence of surfactants. As a practical case-study example, we explore the adsorption of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) on the air-water interface.
View Article and Find Full Text PDFCustomized micro- and mesoporous carbons are in high demand for ecofriendly technologies. Reactivation of the well-characterized pitch-based activated carbon fiber (ACF) can provide a clear understanding of the structural mechanism of steam activation, which would be helpful for designing better micro- and mesoporous carbons. ACFs were reactivated with steam at 973-1173 K.
View Article and Find Full Text PDFSoft porous crystals undergo large structural transformations under a variety of physical stimuli. Breathing-like transformations, occurring with a large volume change, have been associated with an existence of bi-stable or multi-stable crystal structures. Understanding of the mechanism of these transformations is essential for their potential applications in gas adsorption, separation and storage.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) attract a rapidly growing attention across the disciplines due to their multifarious pore structures and unique ability to selectively adsorb, store, and release various guest molecules. Pore structure characterization and coupling of adsorption and structural properties are imperative for rational design of advanced MOF materials and their applications. The pore structure of MOFs represents a three-dimensional network comprised of several types of pore compartments: interconnected cages and channels distinguished by their size, shape, and chemistry.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2020
Understanding the interactions between nanoparticles (NP) and lipid bilayers (LB), which constitute the foundations of cell membranes, is important for emerging biomedical technologies, as well as for assessing health threats related to nanoparticle commercialization. Applying dissipative particle dynamic simulations, we explore adhesion, intake, and release of hydrophobic nanoparticles by DMPC bilayers. To replicate experimental conditions, we develop a novel simulation setup for modeling membranes at isotension conditions.
View Article and Find Full Text PDFCarbon dioxide adsorption on micro- and mesoporous carbonaceous materials in a wide range of temperatures and pressures is of great importance for the problems of gas separations, greenhouse gas capture and sequestration, enhanced hydrocarbon recovery from shales and coals, as well as for the characterization of nanoporous materials using CO as a molecular probe. We investigate the influence of temperature on CO adsorption focusing on the capillary condensation and hysteresis phenomena. We present experimental data on the adsorption of CO on CMK-3, ordered carbon with mesopores of ∼5-6 nm, at various temperatures (185-273 K) and pressures (up to 35 bars).
View Article and Find Full Text PDFAdsorption-induced deformation of a series of silica samples with hierarchical porosity has been studied by in situ small-angle neutron scattering (SANS) and in situ dilatometry. Monolithic samples consisted of a disordered macroporous network of struts formed by a 2D lattice of hexagonally ordered cylindrical mesopores and disordered micropores within the mesopore walls. Strain isotherms were obtained at the mesopore level by analyzing the shift of the Bragg reflections from the ordered mesopore lattice in SANS data.
View Article and Find Full Text PDFConsistent adsorption characterization of metal-organic frameworks (MOFs) is imperative for their wider adoption in industry and practical applications. Current approaches are based on the conventional intuitive representation of MOF pore space as a regular network of pore compartments (cages and channels), adsorption in which occurs independently according to their geometric dimensions. Here, we demonstrate that this conventional approach is unable to describe even qualitatively the shape of Ar adsorption isotherms on hydrated and dehydrated Cu-BTC structures, one of the most well-known MOF materials.
View Article and Find Full Text PDFA facile method for the formation of mesoporosity within nonporous zirconium hydr(oxides) (ZrO/Zr(OH)) is presented and their detoxifying capabilities against dimethyl chlorophosphate (DMCP) are investigated. Nanoaggregates of ZrO/Zr(OH) appear to be deposited on larger thin flakes of the same material. HO is used to induce surface oxygen vacancies of synthesized ZrO/Zr(OH) and, as a consequence, mesopores with an average diameter of 3.
View Article and Find Full Text PDFMechanical properties of hierarchically structured nanoporous materials are determined by the solid phase stiffness and the pore network morphology. We analyze the mechanical stiffness of hierarchically structured silica monoliths synthesized via a sol-gel process, which possess a macroporous scaffold built of interconnected struts with hexagonally ordered cylindrical mesopores. We consider samples with and without microporosity within the mesopore walls and analyze them on the macroscopic level as well as on the microscopic level of the mesopores.
View Article and Find Full Text PDFDespite extensive research over the last several decades, the microscopic characterization of topological phases of adsorbed phenol from aqueous solutions in carbon micropores (pore size < 2.0 nm), which are believed to exhibit a solid and quasi-solid character, has not been reported. Here, we present a combined experimental and molecular level study of phenol adsorption from neutral water solutions in graphitic carbon micropores.
View Article and Find Full Text PDFTension-induced rupture of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) lipid membranes with encapsulated hydrophobic nanoparticles is elucidated using dissipative particle dynamics simulations. The dynamics of hole formation is studied, and a nanoparticle size-dependent relationship is established for the probability of membrane rupture within a given time as a function of the membrane tension. Two mechanisms of hole formation are explored: homogeneous nucleation and heterogeneous nucleation at the nanoparticle surface.
View Article and Find Full Text PDF