This paper discusses the influence of the structure of copolymers based on glycidyl methacrylate and alkyl methacrylates with C-C hydrocarbon side groups on the wettability and sorption properties of surface-modified chitosan aerogels. The grafting of copolymers onto the surface of aerogels was confirmed by elemental analysis, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. As a result of the modification, with an increase in the amount of the hydrocarbon substituent alkyl methacrylate, the surface of the resulting materials became hydrophobic with contact angles in the range of 146-157°.
View Article and Find Full Text PDFThis study proposes to use reactive copolymers based on glycidyl methacrylate and fluoroalkyl methacrylates with a low fluorine content in the monomer unit as agents to reduce the surface free energy (SFE). This work reveals the effect of the structure and composition of copolymers on the SFE and water-repellent properties of these coatings. On a smooth surface, coatings based on copolymers of glycidyl methacrylate and fluoroalkyl methacrylates with fluorine atoms in the monomer unit ranging from three to seven are characterized by SFE values in the range from 25 to 13 mN/m, which is comparable to the values for polyhedral oligomeric silsesquioxanes and perfluoroalkyl acrylates.
View Article and Find Full Text PDF