We demonstrate local phonon analysis of single AlN nanocrystals by two complementary imaging spectroscopic techniques: tip-enhanced Raman scattering (TERS) and nano-Fourier transform infrared (nano-FTIR) spectroscopy. Strong surface optical (SO) phonon modes appear in the TERS spectra with their intensities revealing a weak polarization dependence. The local electric field enhancement stemming from the plasmon mode of the TERS tip modifies the phonon response of the sample, making the SO mode dominate over other phonon modes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
Steady progress in integrated circuit design has forced basic metrology to adopt silicon lattice parameter as a secondary realization of the SI meter that lacks convenient physical gauges for precise surface measurements at a nanoscale. To employ this fundamental shift in nanoscience and nanotechnology, we propose a set of self-organized silicon surface morphologies as a gauge for height measurements within the whole nanoscale (0.3-100 nm) range.
View Article and Find Full Text PDFSince the first report in the early 2000s, there have been several experimental configurations that have demonstrated enhancement and spatial resolution of tip-enhanced Raman spectroscopy (TERS). The combination of a plasmonic substrate and a metallic tip is one suitable approach to achieve even higher enhancement and lateral resolution. In this contribution, we demonstrate TERS on a monolayer of MoS on an array of Au nanodisks.
View Article and Find Full Text PDFWe report a study of the infrared response by localized surface plasmon resonance (LSPR) modes in gold micro- and nanoantenna arrays with various morphologies and surface-enhanced infrared absorption (SEIRA) by optical phonons of semiconductor nanocrystals (NCs) deposited on the arrays. The arrays of nano- and microantennas fabricated with nano- and photolithography reveal infrared-active LSPR modes of energy ranging from the mid to far-infrared that allow the IR response from very low concentrations of organic and inorganic materials deposited onto the arrays to be analyzed. The Langmuir-Blodgett technology was used for homogeneous deposition of CdSe, CdS, and PbS NC monolayers on the antenna arrays.
View Article and Find Full Text PDFIn this article, we present the results of a gap-plasmon tip-enhanced Raman scattering study of MoS monolayers deposited on a periodic array of Au nanostructures on a silicon substrate forming a two dimensional (2D) crystal/plasmonic heterostructure. We observe a giant Raman enhancement of the phonon modes in the MoS monolayer located in the plasmonic gap between the Au tip apex and Au nanoclusters. Tip-enhanced Raman mapping allows us to determine the gap-plasmon field distribution responsible for the formation of hot spots.
View Article and Find Full Text PDFNanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm) were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes.
View Article and Find Full Text PDFThe study of infrared absorption by linear gold nanoantennas fabricated on a Si surface with underlying SiO layers of various thicknesses allowed the penetration depth of localized surface plasmons into SiO to be determined. The value of the penetration depth derived experimentally (20 ± 10 nm) corresponds to that obtained from electromagnetic simulations (12.9-30.
View Article and Find Full Text PDFWe present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir-Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR) energy.
View Article and Find Full Text PDFSelf-assembly of DNA concatemers from native duplexes and those containing non-nucleotidic bridges of varying polarity composed of repeating oligo(ethylene glycol) phosphates -O(CH2CH2O)(n)PO2- or α,Ω-alkanediol phosphates -O(CH2)10OPO2(-)- units was compared. The structures obtained were characterised by polyacrylamide gel electrophoresis, enzymatic digestion and AFM. Our results have revealed that chemically-modified duplexes favour self-termination of concatemer growth and yield up to 35% of nanosized DNA rings.
View Article and Find Full Text PDFWe report the direct visualization of point defect clustering in {113} planes of silicon crystal using a transmission electron microscope, which was supported by structural modeling and high-resolution electron microscope image simulations. In the initial stage an accumulation of nonbonded interstitial-vacancy (I-V) pairs stacked at a distance of 7.68 Å along neighboring atomic chains located on the {113} plane takes place.
View Article and Find Full Text PDFGene therapy based on gene delivery is a promising strategy for the treatment of human disease. Here we present data on structure/biological activity of new biodegradable cholesterol-based cationic lipids with various heterocyclic cationic head groups and linker types. Enhanced accumulation of nucleic acids in the cells mediated by the lipids was demonstrated by fluorescent microscopy and flow cytometry.
View Article and Find Full Text PDF