Publications by authors named "Alexander V Galazyuk"

Introduction: Neuronal hyperactivity has been associated with many brain diseases. In the auditory system, hyperactivity has been linked to hyperacusis and tinnitus. Previous research demonstrated the development of hyperactivity in inferior colliculus (IC) neurons after sound overexposure, but the underlying mechanism of this hyperactivity remains unclear.

View Article and Find Full Text PDF

Neural hyperactivity induced by sound exposure often correlates with the development of hyperacusis and/or tinnitus. In laboratory animals, hyperactivity is typically induced by unilateral sound exposure to preserve one ear for further testing of hearing performance. Most ascending fibers in the auditory system cross into the superior olivary complex and then ascend contralaterally.

View Article and Find Full Text PDF

Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age.

View Article and Find Full Text PDF

Little is known about the functions of Group II metabotropic glutamate receptors (mGluRs2/3) in the inferior colliculus (IC), a midbrain structure that is a major integration region of the central auditory system. We investigated how these receptors modulate sound-evoked and spontaneous firing in the mouse IC We first performed immunostaining and tested hearing thresholds to validate vesicular GABA transporter (VGAT)-ChR2 transgenic mice on a mixed CBA/CaJ x C57BL/6J genetic background. Transgenic animals allowed for optogenetic cell-type identification.

View Article and Find Full Text PDF

The development of knockin mice with Cre recombinase expressed under the control of the promoter for choline acetyltransferase (ChAT) has allowed experimental manipulation of cholinergic circuits. However, currently available ChAT mouse lines are on the C57BL/6J strain background, which shows early onset age-related hearing loss attributed to the Cdh23 mutation (a.k.

View Article and Find Full Text PDF

The acoustic startle reflex (ASR) is subject to substantial variability. This inherent variability consequently shapes the conclusions drawn from gap-induced prepulse inhibition of the acoustic startle reflex (GPIAS) assessments. Recent studies have cast doubt as to the efficacy of this methodology as it pertains to tinnitus assessment, partially, due to variability in and between data sets.

View Article and Find Full Text PDF

The etiology of tinnitus is known to be diverse in the human population. An appropriate animal model of tinnitus should incorporate this pathological diversity. Previous studies evaluating the effect of acoustic over exposure (AOE) have found that animals typically display increased spontaneous firing rates and bursting activity of auditory neurons, which often has been linked to behavioral evidence of tinnitus.

View Article and Find Full Text PDF

Background: The acoustic startle reflex (ASR) is a rapid, involuntary movement to sound, found in many species. The ASR can be modulated by external stimuli and internal state, making it a useful tool in many disciplines. ASR data collection and interpretation varies greatly across laboratories making comparisons a challenge.

View Article and Find Full Text PDF

Tinnitus is a maladaptive neuropathic condition that develops in humans and laboratory animals following auditory insult. In our previous study we demonstrated that sound exposure leads to development of behavioral evidence of tinnitus in a sample of exposed mice. However, this tinnitus mouse model did not account for long-term maladaptive plasticity or aging, factors that are commonly linked to the human tinnitus population.

View Article and Find Full Text PDF

Listeners with hearing loss have difficulty processing sounds in noisy environments. This is most noticeable for speech perception, but is reflected in a basic auditory processing task: detecting a tonal signal in a noise background, i.e.

View Article and Find Full Text PDF

Purpose Of Review: Tinnitus is the sensation of hearing a sound when no external auditory stimulus is present. Most individuals experience tinnitus for brief, unobtrusive periods. However, chronic sensation of tinnitus affects approximately 17% (44 million people) of the general US population.

View Article and Find Full Text PDF

Tinnitus, the perception of a sound without an external acoustic source, is a complex perceptual phenomenon affecting the quality of life in 17% of the adult population. Despite its ubiquity and morbidity, the pathophysiology of tinnitus is a work in progress, and there is no generally accepted cure or treatment. Development of a reliable common animal model is crucial for tinnitus research and may advance this field.

View Article and Find Full Text PDF

Previous studies in echolocating bats, Myotis lucifugus, showed that paradoxical latency shift (PLS) is essential for neural computation of target range and that a number of neurons in the inferior colliculus (IC) exhibit unit-specific PLS (characterized by longer first-spike latency at higher sound levels) in response to tone pulses at the unit's best frequency. The present study investigated whether or not frequency-modulated (FM) pulses that mimic the bat's echolocation sonar signals were equally effective in eliciting PLS. For two-thirds of PLS neurons in the IC, both FM and tone pulses could elicit PLS, but only FM pulses consistently produced unit-specific PLS.

View Article and Find Full Text PDF

A number of central auditory neurons exhibit paradoxical latency shift (PLS), a response characterized by longer response latencies at higher sound levels. PLS neurons are known to play a role in target ranging for echolocating bats that emit frequency-modulated sounds. We recently reported that early inhibition of unit's oscillatory discharges is critical for PLS in the inferior colliculus (IC) of little brown bats.

View Article and Find Full Text PDF