Dietary studies are critical for understanding foraging strategies and have important applications in conservation and habitat management. We applied a robust metabarcoding protocol to characterize the diet of the critically endangered freshwater fish Zingel asper (the Rhone streber). We conducted modelling and simulation analyses to identify and characterize some of the drivers of individual trophic trait variation in this species.
View Article and Find Full Text PDFTissues of multicellular animals are maintained due to a tight balance between cell proliferation and programmed cell death. Sponges are early branching metazoans essential to understanding the key mechanisms of tissue homeostasis. This article is dedicated to the comparative analysis of proliferation and apoptosis in intact tissues of two sponges, Halisarca dujardinii (class Demospongiae) and Leucosolenia variabilis (class Calcarea).
View Article and Find Full Text PDFSponges (Porifera), basal nonbilaterian metazoans, are well known for their high regenerative capacities ranging from reparation of a lost body wall to whole-body regeneration from a small piece of tissues or even from dissociated cells. Sponges from different clades utilize different cell sources and various morphological processes to complete the regeneration. This variety makes these animals promising models for studying the evolution of regeneration in Metazoa.
View Article and Find Full Text PDFSponges (phylum Porifera) are highly specialized filter-feeding metazoans, pumping and filtering water with a network of canals and chambers, the aquiferous system. Most sponges have a leuconoid aquiferous system, characterized by choanocytes organized in small spherical chambers connected with ambient water by a complex net of canals. Such organization requires substantial pressure difference to drive water through an elaborate system of canals, so the choanocytes in leuconoid sponges have several structural features to generate pressure difference.
View Article and Find Full Text PDFOrigin and early evolution of regeneration mechanisms remain among the most pressing questions in animal regeneration biology. Porifera have exceptional regenerative capacities and, as early Metazoan lineage, are a promising model for studying evolutionary aspects of regeneration. Here, we focus on reparative regeneration of the body wall in the Mediterranean demosponge Aplysina cavernicola.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
February 2020
Cell-to-cell signaling is responsible for regulation of many developmental processes such as proliferation, cell migration, survival, cell fate specification and axis patterning. In this article we discussed the role of signaling in the metamorphosis of sponges with a focus on epithelial-mesenchymal transition (EMT) accompanying this event. Sponges (Porifera) are an ancient lineage of morphologically simple animals occupying a basal position on the tree of life.
View Article and Find Full Text PDFThe homoscleromorph sponge Oscarella carmela, first described from central California, USA is shown to represent two superficially similar but both morphologically and phylogenetically distinct species that are co-distributed. We here describe a new species as Oscarella pearsei, sp. nov.
View Article and Find Full Text PDFPLoS One
August 2017
Although sponges are important components of benthic ecosystems of the Caribbean Sea, their diversity remained poorly investigated in the Lesser Antilles. By organizing a training course in Martinique, we wanted both to promote taxonomy and to provide a first inventory of the sponge diversity on this island. The course was like a naturalist expedition, with a field laboratory and a classroom nearby.
View Article and Find Full Text PDFA series of recent expeditions in fjords and canals of Southern Chilean Patagonia allowed the re-collection of Halisarca magellanica Topsent, 1901 and the discovery of a new species, Halisarca desqueyrouxae sp. nov. The material studied was collected at depths ranging from 3 to 30 m at latitudes comprised between 42° and 49°S.
View Article and Find Full Text PDFThe ability to regenerate is widespread in the animal kingdom, but the regenerative capacities and mechanisms vary widely. To understand the evolutionary history of the diverse regeneration mechanisms, the regeneration processes must be studied in early-evolved metazoans in addition to the traditional bilaterian and cnidarian models. For this purpose, we have combined several microscopy techniques to study mechanisms of regeneration in the demosponge Halisarca dujardini.
View Article and Find Full Text PDFSponges are known to possess remarkable reconstitutive and regenerative abilities ranging from common wounding or body part regeneration to more impressive re-building of a functional body from dissociated cells. Among the four sponge classes, Homoscleromorpha is notably the only sponge group to possess morphologically distinct basement membrane and specialized cell-junctions, and is therefore considered to possess true epithelia. The consequence of this peculiar organization is the predominance of epithelial morphogenesis during ontogenesis of these sponges.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
August 2016
Matrotrophy, the continuous extra-vitelline supply of nutrients from the parent to the progeny during gestation, is one of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification. The most elaborate form of matrotrophy-placentotrophy-is well known for its broad occurrence among vertebrates, but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting. In the first comprehensive analysis of matrotrophy across the animal kingdom, we report that regardless of the degree of expression, it is established or inferred in at least 21 of 34 animal phyla, significantly exceeding previous accounts and changing the old paradigm that these phenomena are infrequent among invertebrates.
View Article and Find Full Text PDFThe family Oscarellidae is one of the two families in the class Homoscleromorpha (phylum Porifera) and is characterized by the absence of a skeleton and the presence of a specific mitochondrial gene, tatC. This family currently encompasses sponges in two genera: Oscarella with 17 described species and Pseudocorticium with one described species. Although sponges in this group are relatively well-studied, phylogenetic relationships among members of Oscarellidae and the validity of genus Pseudocorticium remain open questions.
View Article and Find Full Text PDFThe emergence of multicellularity is regarded as one of the major evolutionary events of life. This transition unicellularity/pluricellularity was acquired independently several times (King 2004). The acquisition of multicellularity implies the emergence of cellular cohesion and means of communication, as well as molecular mechanisms enabling the control of morphogenesis and body plan patterning.
View Article and Find Full Text PDFSecondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha) is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates.
View Article and Find Full Text PDFLysophospholipids (LPLs) are recognized as important signaling molecules in metazoan cells. LPLs seem to be widely distributed among marine invertebrates, but their physiological role remains poorly known. Marine sponges produce original phospholipids and LPLs whose isolation and structural elucidation rarely have been reported.
View Article and Find Full Text PDFThe work was aimed at performing long-term cultivation of primmorphs in vitro from freshwater sponge Lubomirskia baikalensis (Pallas 1776), collected from Lake Baikal, obtaining its long-term primmorph culture in both natural (NBW) and artificial (ABW) Baikal water and at identifying the impact of different environmental factors on formation and growth of primmorphs. The first fine aggregates of L. baikalensis are formed in vitro 10-15 min after dissociation of sponge cells.
View Article and Find Full Text PDFBackground: Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies.
View Article and Find Full Text PDFBackground: Of the 20 or so signal transduction pathways that orchestrate cell-cell interactions in metazoans, seven are involved during development. One of these is the Notch signalling pathway which regulates cellular identity, proliferation, differentiation and apoptosis via the developmental processes of lateral inhibition and boundary induction. In light of this essential role played in metazoan development, we surveyed a wide range of eukaryotic genomes to determine the origin and evolution of the components and auxiliary factors that compose and modulate this pathway.
View Article and Find Full Text PDFThe capacity of all cells to respond to stimuli implies the conduction of information at least over short distances. In multicellular organisms, more complex systems of integration and coordination of activities are necessary. In most animals, the processing of information is performed by a nervous system.
View Article and Find Full Text PDFSponges branch basally in the metazoan phylogenetic tree and are believed to be composed of four distinct lineages with still uncertain relationships. Indeed, some molecular studies propose that Homoscleromorpha may be a fourth Sponge lineage, distinct from Demospongiae in which they were traditionally classified. They harbour many features that distinguish them from other sponges and are more evocative of those of the eumetazoans.
View Article and Find Full Text PDFThe metamorphosis of the cinctoblastula of Homoscleromorpha is studied in five species belonging to three genera. The different steps of metamorphosis are similar in all species. The metamorphosis occurs by the invagination and involution of either the anterior epithelium or the posterior epithelium of the larva.
View Article and Find Full Text PDFThe potency of flagellated cells of Halisarca dujardini (Halisarcida, Demospongiae) larvae from the White Sea (Arctic) was investigated experimentally during metamorphosis. Two types of experiments were conducted. First, larvae were maintained in Ca2+ free seawater (CFSW) until the internal cells were released outside through the opening of the posterior pole.
View Article and Find Full Text PDF