Publications by authors named "Alexander V Dudchenko"

Despite significant capital and operating costs, mechanical vapor compression (MVC) remains the preferred technology for challenging brine concentration applications. This work seeks to assess the dependence of MVC costs on feedwater salinity and desired water recovery and to quantify the value of improved component performance or reduced component costs for reducing the levelized cost of water (LCOW) of MVC. We built a cost optimization model coupling thermophysical, heat and mass transfer, and technoeconomic models to optimize and identify low cost MVC system designs as a function of feedwater salinity and water recovery.

View Article and Find Full Text PDF

Cost-optimization models are powerful tools for evaluating emerging water treatment processes. However, to date, optimization models do not incorporate detailed chemical reaction phenomena, limiting the assessment of pretreatment and mineral scaling. Moreover, novel approaches for high-salinity and high-recovery desalination are typically proposed without direct quantification of pretreatment needs or mineral scaling.

View Article and Find Full Text PDF

Reducing the cost of high-salinity (>75 g/L total dissolved solids) brine concentration technology would unlock the potential for vast inland water supplies and promote the safe management of concentrated aqueous waste streams. Impactful innovation will target component performance improvements and cost reductions that yield the highest impact on system costs, but the desalination community lacks methods for quantitatively evaluating the value of innovation or the robustness of technology platforms relative to competing technologies. This work proposes a suite of methods built on process-based cost optimization models that explicitly address the complexities of membrane-separation processes, namely that these processes comprise dozens of nonlinearly interacting components and that innovation can occur in more than one component at a time.

View Article and Find Full Text PDF

Membrane-based treatment of oily wastewater remains a significant challenge, particularly under high salinity conditions. The main difficulty associated with this separation process is membrane fouling, mostly caused by wetting and coalescence of emulsified oil droplets on the membrane surface. In this study, electrically conducting carbon nanotube-based ultrafiltration membranes were used to treat an emulsified oil suspension at ionic strengths as high as 100 mM.

View Article and Find Full Text PDF

The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water.

View Article and Find Full Text PDF

Water shortages and brine waste management are increasing challenges for coastal and inland regions, with high-salinity brines presenting a particularly challenging problem. These high-salinity waters require the use of thermally driven treatment processes, such as membrane distillation, which suffer from high complexity and cost. Here, we demonstrate how controlling the frequency of an applied alternating current at high potentials (20 V) to a porous thin-film carbon nanotube (CNT)/polymer composite Joule heating element can prevent CNT degradation in ionizable environments such as high-salinity brines.

View Article and Find Full Text PDF

Oil/water separations have become an area of great interest, as growing oil extraction activities are increasing the generation of oily wastewaters as well as increasing the risk of oil spills. Here, we demonstrate a membrane-based and fouling-free oil/water separation method that couples carbon nanotube-poly(vinyl alcohol) underwater superoleophobic ultrafiltration membranes with magnetic Pickering emulsions. We demonstrate that this process is insensitive to low water temperatures, high ionic strength, or crude oil loading, while allowing operation at high permeate fluxes and producing high quality permeate.

View Article and Find Full Text PDF