Publications by authors named "Alexander V Benderskii"

Phyllosilicate clays are layered structures with diverse nanoscale morphology depending on the composition. Size mismatch between the sheets can cause them to form nanoscrolls, a spiral structure with different inner and outer surface charges. The hydroxyls on the exposed surface of the nanoscrolls determine the adsorption properties and hydrophilicity of the surface.

View Article and Find Full Text PDF

Our understanding of the dielectric response of interfacial water, which underlies the solvation properties and reaction rates at aqueous interfaces, relies on the linear response approximation: an external electric field induces a linearly proportional polarization. This implies antisymmetry with respect to the sign of the field. Atomistic simulations have suggested, however, that the polarization of interfacial water may deviate considerably from the linear response.

View Article and Find Full Text PDF

Mixed anatase/rutile TiO exhibits high photocatalytic activity; however, the mechanism underlying the high performance of the mixed phases is not fully understood. We have performed time-domain ab initio calculations to study the exited state dynamics in mixed phase TiO and to investigate the impact of an oxygen vacancy on the dynamics. The anatase(100)/rutile(001) heterostructures with and without an oxygen vacancy used in this work exhibit type II band alignment with the conduction band of rutile residing above that of anatase.

View Article and Find Full Text PDF

Molecular organization of vapor-deposited organic molecules in the active layer of organic light-emitting diodes (OLEDs) has been a matter of great interest as it directly influences various optoelectronic properties and the overall performance of the devices. Contrary to the general assumption of isotropic molecular orientation in vacuum-deposited thin-film OLEDs, it is possible to achieve an anisotropic molecular distribution at or near the surface under controlled experimental conditions. In this study, we have used interface-specific vibrational sum frequency generation (VSFG) spectroscopy to determine the orientation of a low-molecular weight OLED material, 4,4'-bis(-carbazolyl)-1,1'-biphenyl (CBP), at free (air) and buried (CaF) interfaces.

View Article and Find Full Text PDF

The Shockley-Read-Hall (SRH) model, in which the deep trap defect states in the band gap are proposed as nonradiative electron-hole (e-h) recombination centers, has been widely used to describe the nonradiative e-h recombination through the defects in semiconductor. By using the ab initio nonadiabatic molecular dynamics method, we find that the SRH model fails to describe the e-h recombination behavior for defects in 2D monoelemental material such as monolayer black phosphorus (BP). Through the investigation of three intrinsic defects with shallow and deep defect states in monolayer BP, it is found that, surprisingly, none of these defects significantly accelerates the e-h recombination.

View Article and Find Full Text PDF

The methyl-terminated Si(111) surface possesses a 3-fold in-plane symmetry, with the methyl groups oriented perpendicular to the substrate. The propeller-like rotation of the methyl groups is hindered at room temperature and proceeds via 120° jumps between three isoenergetic minima in registry with the crystalline Si substrate. We have used line-shape analysis of polarization-selected vibrational sum frequency generation spectroscopy to determine the rotational relaxation rate of the surface methyl groups and have measured the temperature dependence of the relaxation rate between 20 and 120 °C.

View Article and Find Full Text PDF

We present a measurement of molecular orientation of water at charged surfactant aqueous interfaces as a function of surface charge density. The polarization dependent spectral line shapes of the water bend mode were measured by vibrational sum-frequency generation at the positively charged surfactant cetyltrimethylammonium bromide (CTAB)/water interface and negatively charged surfactant sodium dodecyl sulfate/water interface. Orientational analysis using the water bend mode as a vibrational probe, within the electric dipole approximation, reveals structural differences between these surfaces and quantifies how different hydrogen bonded species re-orient around the surfactant head groups as the surface charge density changes.

View Article and Find Full Text PDF

Molecular orientation at the donor-acceptor interface plays a crucial role in determining the efficiency of organic semiconductor materials. We have used vibrational sum frequency generation spectroscopy to determine the orientation of poly-3-hexylthiophene (P3HT) at the planar buried interface with fullerene (C). The thiophene rings of P3HT have been found to tilt significantly toward C, making an average angle θ ≈ 49° ± 10° between the plane of the ring and the interface.

View Article and Find Full Text PDF

We report a novel approach to probe the local ion concentration at graphene/water interfaces using in situ Raman spectroscopy. Here, the upshifts observed in the G band Raman mode under applied electrochemical potentials are used to determine the charge density in the graphene sheet. For voltages up to ±0.

View Article and Find Full Text PDF

Interactions with surfactant molecules can significantly alter the structure of interfacial water. We present a comparative study of water-surfactant interactions using two different spectroscopic approaches: water at planar surfactant monolayers by sum frequency generation (SFG) spectroscopy and interfacial water confined in reverse micelles formed by the same surfactants using IR absorption spectroscopy. We report spectral features in the OH-stretching region (3200-3700 cm) that are observed in both IR and SFG spectra, albeit with different relative amplitudes, for ionic surfactant sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and nonionic surfactant polyoxyethylene(4)lauryl ether (Brij L-4) reverse micelles in hexane and the corresponding monolayers at the air/water interface.

View Article and Find Full Text PDF

Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance.

View Article and Find Full Text PDF

We report a terahertz optical modulator consisting of randomly stacked trilayer graphene (TLG) deposited on an oxidized silicon substrate by means of THz-Time Domain Spectroscopy (THz-TDS). Here, the gate tuning of the Fermi level of the TLG provides the fundamental basis for the modulation of THz transmission. We measured a 15% change in the THz transmission of this device over a broad frequency range (0.

View Article and Find Full Text PDF

We previously reported the spectrum of the water bend vibrational mode (ν) at the air/water interface measured using sum-frequency generation (SFG). Here, we present experimental evidence to aid the assignment of the ν spectral features to H-bonded classes of interfacial water, which is in general agreement with two recent independently published theoretical studies. The dispersive line shape shows an apparent frequency shift between SSP and PPP polarization combinations (SFG-visible-infrared).

View Article and Find Full Text PDF

We present a general response function formalism describing the contribution of orientational dynamics of molecules at interfaces to spectroscopic line shapes in vibrational sum frequency generation (SFG). When reorientation occurs on the time scale comparable to vibrational dephasing, its dynamics can be extracted from polarization-selected SFG spectral line shapes. Unique features of orientational motion at interfaces are (1) the anisotropic case-specific equilibrium orientational distribution and (2) possible dynamic anisotropy (e.

View Article and Find Full Text PDF

Surface-bound azobenzenes exhibit reversible photoswitching via trans-cis photoisomerization and have been proposed for a variety of applications such as photowritable optical media, liquid crystal displays, molecular electronics, and smart wetting surfaces. We report a novel synthetic route using simple protection chemistry to form azobenzene-functionalized SAMs on gold and present a mechanistic study of the molecular order, orientation, and conformation in these self-assembled monolayers (SAMs). We use vibrational sum-frequency generation (VSFG) to characterize their vibrational modes, molecular orientation, and photoisomerization kinetics.

View Article and Find Full Text PDF

Surface-selective sum frequency generation (SFG) spectroscopy has been previously shown to benefit from a finite time delay between two input laser pulses, which suppresses the nonresonant background and improves spectral resolution. Here we demonstrate another consequence of the time delay in SFG: depending on the magnitude of the delay, nearby resonances (e.g.

View Article and Find Full Text PDF

The air-water interface is perhaps the most common liquid interface. It covers more than 70 per cent of the Earth's surface and strongly affects atmospheric, aerosol and environmental chemistry. The air-water interface has also attracted much interest as a model system that allows rigorous tests of theory, with one fundamental question being just how thin it is.

View Article and Find Full Text PDF

Sum frequency generation (SFG) is a surface-selective spectroscopy that provides a wealth of molecular-level information on the structure and dynamics at surfaces and interfaces. This paper addresses the general issue of spectral resolution and sensitivity of the broad-band (BB) SFG that involves a spectrally narrow nonresonant (usually visible) and a BB resonant (usually infrared) laser pulses. We examine how the spectral width and temporal shape of the two pulses, and the time delay between them, relate to the spectroscopic line shape and signal level in the BB-SFG measurement.

View Article and Find Full Text PDF

Molecular organization of Langmuir-Blodgett (LB) monolayers of novel copper-containing metal-ligand surfactants was characterized by the surface-selective vibrational sum frequency generation (SFG) spectroscopy. The orientational and conformational order inferred from the SFG peak amplitudes and line shapes were correlated with the two-dimensional phases of the monolayers observed in the compression isotherms. The octadecyl-pyridin-2-ylmethyl-amine (L(PyC18)) ligand by itself shows good amphiphilic properties, as indicated by the high monolayer collapse pressure at the air/water interface, but its LB films transferred onto fused silica exhibit a high degree of trans-gauche conformational disorder in the alkyl tails.

View Article and Find Full Text PDF

Covalent surface attachment of carbohydrate moieties using maleimide-sulfhydril reaction was characterized by surface-selective vibrational sum-frequency generation (VSFG) spectroscopy. The comparative VSFG spectra of the precursor maleimide-terminated SAM and the product glucose adlayer reveal the high efficiency of the surface coupling reaction (>90%) and the details of the molecular organization of the formed carbohydrate adlayer. The glucose groups are orientationally well ordered, as judged by their sharp C-H stretch bands.

View Article and Find Full Text PDF

The attachment of cells onto solid supports is fundamental in the development of advanced biosensors or biochips. In this work, we characterize cortical neuron adhesion, growth, and distribution of an adhesive layer, depending on the molecular structure and composition . Neuronal networks are successfully grown on amino-terminated alkanethiol self-assembled monolayer (SAM) on a gold substrate without adhesion protein interfaces.

View Article and Find Full Text PDF

We present a new technique of broad-band heterodyne-detected sum frequency generation (HD-SFG) spectroscopy and demonstrate its high sensitivity allowing surface-selective measurements of vibrational spectra at submonolayer surface coverage, as low as a few percent of a monolayer. This was achieved without the help of surface enhancement phenomena, on a transparent dielectric substrate (water), and without introducing fluorescent labels, in fact, without utilizing any electronic resonances. Only the intrinsic vibrational transitions were employed for the detection of the analyte molecules (1-octanol).

View Article and Find Full Text PDF

Vibrational sum frequency generation (VSFG) spectroscopy was used to study the nanoscale geometric effects on molecular conformation of dodecanethiol ligand on gold nanoparticles of varying size between 1.8 and 23 nm. By analyzing the CH3 and CH2 stretch transitions of dodecanethiol using the spectroscopic propensity rules for the SFG process, we observe the increase of the gauche defects in the alkyl chain of the ligand on the nanoparticle surface when the curvature approaches the size of the molecule ( approximately 1.

View Article and Find Full Text PDF

Molecular organization at polyimide surfaces used as alignment layers in liquid crystal displays was investigated using vibrational sum frequency generation (SFG) spectroscopy. We focus on the orientation of the long alkyl side groups at the polymer surface using polarization-selected SFG spectra of the CH(3)- and CH(2)-stretch modes of the side chain. Mechanical rubbing and baking, an accepted industrial procedure used to produce pretilt of the liquid crystal, was found to induce pronounced azimuthal anisotropy in the orientational distribution of the alkyl side chains.

View Article and Find Full Text PDF

We combine frequency- and femtosecond time-domain measurements of vibrational coherences for spectroscopic characterization of surface monolayer films, utilizing 3-wave mixing as the surface-selective technique. Frequency-domain spectra in the CH-stretch region are obtained by infrared + visible sum frequency generation (SFG). Time-domain coherences are measured using SFG free induction decay (SFG-FID), where a 75 fs IR pulse excites several vibrational modes and a delayed 40 fs visible pulse probes the oscillating surface polarization.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3lbsaa0fo38kbi9ts3is6ei5mnk65c9t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once