Memory acquisition is accompanied by many cellular and molecular processes, and it is not always clear what role they play. Fatty acids (FAs) are known to be important for cognitive functions, but the details of their involvement in memory processes remain unknown. We investigated FAs in the prefrontal cortex and hippocampus of rats trained to perform a task with food reinforcement.
View Article and Find Full Text PDFThe topical problem is to find new, more effective and safe treatments for cancer. The purpose of the present work was to study the combined effects of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) and consumption of n-3 polyunsaturated fatty acids (PUFAs) on tumor growth and the content of FAs in the thymus and tumor tissue in mice. Fatty acid composition was determined using gas chromatography.
View Article and Find Full Text PDFPurpose: The effects of extremely high-frequency electromagnetic radiation (EHF EMR) on thymus weight and its fatty acids (FA) content and FA composition in X-irradiated mice were studied to test the involvement of FA in possible protective effects of EHF EMR against ionizing radiation.
Materials And Methods: Mice were exposed to low-intensity pulse-modulated EHF EMR (42.2 GHz, 0.
Purpose: To test the participation of fatty acids (FA) in antitumor effects of extremely high-frequency electromagnetic radiation (EHF EMR), the changes in the FA composition in the thymus, liver, blood plasma, muscle tissue, and tumor tissue in mice with Ehrlich solid carcinoma exposed to EHF EMR were studied.
Materials And Methods: Normal and tumor-bearing mice were exposed to EHF EMR with effective parameters (42.2 GHz, 0.
The effects of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR; 42.2 GHz, 0.1 mW/cm(2) , exposure duration 20 min) on the fatty acid (FA) composition of thymic cells and blood plasma in normal mice and in mice with peritoneal inflammation were studied.
View Article and Find Full Text PDF