Recent sequencing efforts have described the mutational landscape of the pediatric brain tumor medulloblastoma. Although MLL2 is among the most frequent somatic single nucleotide variants (SNV), the clinical and biological significance of these mutations remains uncharacterized. Through targeted re-sequencing, we identified mutations of MLL2 in 8 % (14/175) of MBs, the majority of which were loss of function.
View Article and Find Full Text PDFThe disruption and alteration of genomic methylation patterns is a hallmark of cancer and other disease states. Understanding and characterizing genome-wide methylation will have a profound effect on our understanding of tumorigenesis and provide novel avenues for therapy. This chapter serves to describe techniques that examine genome-wide methylation patterns including luminometric methylation assay, restriction landmark genome scanning, and the cytosine extension assay, which utilize methylation-sensitive restriction enzymes.
View Article and Find Full Text PDFGlioblastoma, medulloblastoma, and ependymoma represent molecularly and clinically diverse forms of adult and pediatric brain tumors. While each tumor displays genetic, transcriptional, and cytogenetic heterogeneity, the epigenome of these tumors has only recently emerged as a major field of interest. Here, we describe advances in our understanding of the epigenetics of brain tumors, focusing on DNA methylation, histone modifications, and microRNA deregulation which contribute to the pathogenesis of these diseases.
View Article and Find Full Text PDFDNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division. DNMT1 expression is tightly regulated within the cell cycle. Our previous study showed that the binding of a protein with an apparent size of approximately 40 kDa on DNMT1 3'-UTR triggered the destabilization of DNMT1 mRNA transcript during G(o)/G(1) phase.
View Article and Find Full Text PDFThe mechanism of action of DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR), a potential anticancer agent is believed to be activated by the demethylation of tumor suppressor genes. We tested here the hypothesis that demethylating agents also demethylate and activate genes involved in invasion and metastasis and therefore might increase the risk of developing tumor metastasis. The effect of 5-aza-CdR on noninvasive human breast cancer cells MCF-7 and ZR-75-1 was evaluated by cell proliferation, invasion, and migration assay.
View Article and Find Full Text PDFDNA methylation and chromatin structure are two modes of epigenetic control of genome function. Although it is now well established that chromatin silencing could lead to DNA methylation, the relation between chromatin activation and DNA demethylation is unclear. It was generally believed that expression of methylated genes could only be restored by demethylating agents, such as 5-aza-deoxycytidine (5-azaCdR), and that inhibition of histone deacetylation by Trichostatin A (TSA) only activates transcription of unmethylated genes.
View Article and Find Full Text PDFDNA methylation is a major determinant of epigenetic inheritance. DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division, and deregulated expression of DNMT1 leads to cellular transformation. We show herein that AU-rich element/poly(U)-binding/degradation factor 1 (AUF1)/heterogeneous nuclear ribonucleoprotein D interacts with an AU-rich conserved element in the 3' untranslated region of the DNMT1 mRNA and targets it for destabilization by the exosome.
View Article and Find Full Text PDFDNA methyltransferase 1 (DNMT1) is an important component of the epigenetic machinery and is responsible for copying DNA methylation patterns during cell division. Coordination of DNA methylation and DNA replication is critical for maintaining epigenetic programming. Knockdown of DNMT1 leads to inhibition of DNA replication, but the mechanism has been unclear.
View Article and Find Full Text PDF