Ginsenoside Rh2 increases the efficacy of doxorubicin (DOX) treatment in murine models of solid and ascites Ehrlich's adenocarcinoma. In a solid tumor model (treatment commencing 7 days after inoculation), DOX + Rh2 co-treatment was significantly more efficacious than DOX alone. If treatment was started 24 h after inoculation, the inhibition of tumor growth of a solid tumor for the DOX + Rh2 co-treatment group was complete.
View Article and Find Full Text PDFThe tubular immunostimulating complex (TI-complex) consisting of cucumarioside A2-2, cholesterol and monogalactosyldiacylglycerol (MGDG) from marine macrophytes is the perspective antigen delivery system for subunit vaccines. MGDG is a lipid matrix for the protein antigen incorporated in the TI-complex. The aim of the present work was to study the influence of MGDGs from different macrophytes on conformation and immunogenicity of the secreted recombinant uncleaved hemagglutinin monomer (HA0S) of influenza A virus H1/N1.
View Article and Find Full Text PDFThe tubular immunostimulating complex (TI-complex) is a novel nanoparticulate antigen delivery system consisting of cholesterol, triterpene glycoside cucumarioside A(2)-2, and glycolipid monogalactosyldiacylglycerol (MGDG) isolated from marine macrophytes. MGDG is crucial for the formation of a lipid matrix for the protein antigen incorporated in TI-complexes. Fatty acid composition and the physical state of this glycolipid depend on the taxonomic position of marine macrophytes.
View Article and Find Full Text PDFBackground: There is an urgent need to develop safe and effective adjuvants for the new generation of subunit vaccines. We developed the tubular immunostimulating complex (TI-complex) as a new nanoparticulate antigen delivery system. The morphology and composition of TI-complexes principally differ from the known vesicular immunostimulating complexes (ISCOMs).
View Article and Find Full Text PDF