Dengue virus (DENV) NS5 protein comprises an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain (RdRp). DENV RdRp is responsible for viral RNA synthesis via a de novo initiation mechanism and represents an attractive target for anti-viral therapy. Herein we describe the characterization of its de novo initiation activities by PAGE analyses and the knowledge gained was used to develop a fluorescent-based assay.
View Article and Find Full Text PDFCrystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket.
View Article and Find Full Text PDFMethyltransferases (MTases) from the genus Flavivirus encode both N-7 and 2'-O activities needed for type 1 (m(7)GpppNm) cap structure formation. We performed kinetic studies to understand the mechanisms of its progressive N-7 and 2'-O methylations. Sequential N-7 to 2'-O methylation occurred via a random bi bi and processive mechanism that does not involve enzyme-RNA dissociation.
View Article and Find Full Text PDF