Publications by authors named "Alexander T Lill"

PCPDTBT-SO K (CPE-K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated.

View Article and Find Full Text PDF

A detailed study of a high-k fluoropolymer gate dielectric material, poly(vinylidene fluoride- co-hexafluoropropylene) [P(VDF-HFP)], is presented as a guide to achieve low operational voltage and electrically stable device performance. The large dipole moment of C-F dipoles in P(VDF-HFP) is responsible for its high dielectric constant as well as its potentially ferroelectric behavior that must be minimized to avoid hysteretic current-voltage characteristics. A range of material grades and processing conditions are explored and are shown to have a significant effect on the degree of hysteresis observed in device-transfer characteristics.

View Article and Find Full Text PDF

Ion-free organic ratchets with asymmetric injecting contacts (AICs) are fabricated using solution-processable organic semiconductors. Scanning Kelvin probe microscopy analysis reveals that the rectifying function is achieved via the "charge pump" mechanism. Electrical characterizations show that the device can readily operate under industrial standard radio frequency and its high-frequency performance may be enhanced through further material/device engineering.

View Article and Find Full Text PDF

Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated.

View Article and Find Full Text PDF

A novel wide-gap conjugated polymer PhF2,5 (E = 1.9 eV) is designed to contain alternating cyclopentadithiophene and difluorophenylene unit with the goal of favoring unipolar organic field effect transistor characteristics. The higher lowest unoccupied molecular orbital energy of PhF2,5 increases the barrier to electron injection, leading to unipolar transport and higher on/off ratios, without sacrificing desirable high hole mobilities.

View Article and Find Full Text PDF