Complexes of ERLIN1 and ERLIN2 (ER lipid raft-associated 1 and 2) form large ring-like cup-shaped structures on the endoplasmic reticulum (ER) membrane and serve as platforms to bind cholesterol and E3 ubiquitin ligases, potentially defining functional nanodomains. Here, we show that ERLIN scaffolds mediate the interaction between the full-length isoform of TMUB1 (transmembrane and ubiquitin-like domain-containing 1) and RNF170 (RING finger protein 170). We identify a luminal N-terminal conserved region in TMUB1 and RNF170, which is required for this interaction.
View Article and Find Full Text PDFLipid droplet (LD) degradation provides metabolic energy and important building blocks for various cellular processes. The two major LD degradation pathways include autophagy (lipophagy), which involves delivery of LDs to autolysosomes, and lipolysis, which is mediated by lipases. While abnormalities in LD degradation are associated with various pathological disorders, our understanding of lipophagy is still rudimentary.
View Article and Find Full Text PDFSulfite oxidase (SOX) is a homodimeric molybdoheme enzyme that oxidizes sulfite to sulfate at the molybdenum center. Following substrate oxidation, molybdenum is reduced and subsequently regenerated by two sequential electron transfers (ETs) via heme to cytochrome c. SOX harbors both metals in spatially separated domains within each subunit, suggesting that domain movement is necessary to allow intramolecular ET.
View Article and Find Full Text PDFIsolated sulfite oxidase deficiency (ISOD) is a rare recessive and infantile lethal metabolic disorder, which is caused by functional loss of sulfite oxidase (SO) due to mutations of the SUOX gene. SO is a mitochondrially localized molybdenum cofactor (Moco)- and heme-dependent enzyme, which catalyzes the vital oxidation of toxic sulfite to sulfate. Accumulation of sulfite and sulfite-related metabolites such as S-sulfocysteine (SSC) are drivers of severe neurodegeneration leading to early childhood death in the majority of ISOD patients.
View Article and Find Full Text PDFIsolated sulfite oxidase deficiency (ISOD) is a rare hereditary metabolic disease caused by absence of functional sulfite oxidase (SO) due to mutations of the SUOX gene. SO oxidizes toxic sulfite and sulfite accumulation is associated with neurological disorders, progressive brain atrophy and early death. Similarities of these neurological symptoms to abundant diseases like neonatal encephalopathy underlines the raising need to increase the awareness for ISOD.
View Article and Find Full Text PDFMolybdenum cofactor deficiency and isolated sulfite oxidase deficiency are two rare genetic disorders that are caused by impairment of the mitochondrial enzyme sulfite oxidase. Sulfite oxidase is catalyzing the terminal reaction of cellular cysteine catabolism, the oxidation of sulfite to sulfate. Absence of sulfite oxidase leads to the accumulation of sulfite, which has been identified as a cellular toxin.
View Article and Find Full Text PDFIsolated sulphite oxidase deficiency (iSOD) is an autosomal recessive inborn error in metabolism characterised by accumulation of sulphite, which leads to death in early infancy. Sulphite oxidase (SO) is encoded by the SUOX gene and forms a heme- and molybdenum-cofactor-dependent enzyme localised in the intermembrane space of mitochondria. Within SO, both cofactors are embedded in two separated domains, which are linked via a flexible 11 residue tether.
View Article and Find Full Text PDFSulfite oxidase (SO) is encoded by the nuclear SUOX gene and catalyzes the final step in cysteine catabolism thereby oxidizing sulfite to sulfate. Oxidation of sulfite is dependent on two cofactors within SO, a heme and the molybdenum cofactor (Moco), the latter forming the catalytic site of sulfite oxidation. SO localizes to the intermembrane space of mitochondria where both-pre-SO processing and cofactor insertion-are essential steps during SO maturation.
View Article and Find Full Text PDFThe oxygen-independent nitrate-nitrite-nitric oxide (NO) pathway is considered as a substantial source of NO in mammals. Dietary nitrate/nitrite are distributed throughout the body and reduced to NO by the action of various enzymes. The intermembrane spaced (IMS), molybdenum cofactor-dependent sulfite oxidase (SO) was shown to catalyze such a nitrite reduction.
View Article and Find Full Text PDF