Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia.
View Article and Find Full Text PDFDcuA of Escherichia coli is known as an alternative C -dicarboxylate transporter for the main anaerobic C -dicarboxylate transporter DcuB. Since dcuA is expressed constitutively under aerobic and anaerobic conditions, DcuA was suggested to serve aerobically as a backup for the aerobic (DctA) transporter, or for the anabolic uptake of C -dicarboxylates. In this work, it is shown that DcuA is required for aerobic growth with L-aspartate as a nitrogen source, whereas for growth with L-aspartate as a carbon source, DctA was needed.
View Article and Find Full Text PDFThe Slc26A/SulP family of ions transporter is ubiquitous and widpsread in all kingdon of life. In E. coli, we have demonstrated that the Slc26 protein DauA is a C-dicarboxilic acids (C-diC) transporter active at acidic pH.
View Article and Find Full Text PDFC4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration).
View Article and Find Full Text PDFThe sensor kinase DcuS of Escherichia coli co-operates under aerobic conditions with the C -dicarboxylate transporter DctA to form the DctA/DcuS sensor complex. Under anaerobic conditions C -dicarboxylate transport in fumarate respiration is catalyzed by C -dicarboxylate/fumarate antiporter DcuB. (i) DcuB interacted with DcuS as demonstrated by a bacterial two-hybrid system (BACTH) and by co-chromatography of the solubilized membrane-proteins (mHPINE assay).
View Article and Find Full Text PDFThe thermophilic Geobacillus thermodenitrificans and Geobacillus kaustophilus are able to use citrate or C4-dicarboxylates like fumarate or succinate as the substrates for growth. The genomes of the sequenced Geobacillus strains (nine strains) each encoded a two-component system of the CitA family. The sensor kinase of G.
View Article and Find Full Text PDFGlioblastoma is a disease characterized by rapid invasive tumour growth. Studies on the proapoptotic CD95/CD95L signalling pathway recently suggested a significant contribution of CD95 signalling towards the high degree of motility in glioma cells. Apogenix has developed APG101, a clinical phase II compound designed to bind and neutralize CD95L, and thus to interfere with CD95/CD95L-based signalling.
View Article and Find Full Text PDF