Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circuit networks relying on a complex-phase circuit element.
View Article and Find Full Text PDFMotivated by recent realizations of hyperbolic lattices in superconducting waveguides and electric circuits, we compute the Hofstadter butterfly on regular hyperbolic tilings. Utilizing large hyperbolic lattices with periodic boundary conditions, we obtain the true bulk spectrum unaffected by boundary states. The butterfly spectrum with large extended gapped regions prevails, and its shape is universally determined by the fundamental tile, while the fractal structure is lost.
View Article and Find Full Text PDFThe transfer of topological concepts from the quantum world to classical mechanical and electronic systems has opened fundamentally different approaches to protected information transmission and wave guidance. A particularly promising emergent technology is based on recently discovered topolectrical circuits that achieve robust electric signal transduction by mimicking edge currents in quantum Hall systems. In parallel, modern active matter research has shown how autonomous units driven by internal energy reservoirs can spontaneously self-organize into collective coherent dynamics.
View Article and Find Full Text PDFWe employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry PT and chiral symmetry anti-PT (APT). The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of PT-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit.
View Article and Find Full Text PDFDissipation is a general feature of non-Hermitian systems. But rather than being an unavoidable nuisance, non-Hermiticity can be precisely controlled and hence used for sophisticated applications, such as optical sensors with enhanced sensitivity. In our work, we implement a non-Hermitian photonic mesh lattice by tailoring the anisotropy of the nearest-neighbor coupling.
View Article and Find Full Text PDF