Publications by authors named "Alexander Statnikov"

Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study).

View Article and Find Full Text PDF

Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments.

View Article and Find Full Text PDF

Objective: Inflammatory mediators, such as prostaglandin E2 (PGE2 ) and interleukin-1β (IL-1β), are produced by osteoarthritic (OA) joint tissue, where they may contribute to disease pathogenesis. We undertook the present study to examine whether inflammation, evidenced in plasma and peripheral blood leukocytes (PBLs), reflects the presence, progression, or specific symptoms of symptomatic knee OA.

Methods: Patients with symptomatic knee OA were enrolled in a 24-month prospective study of radiographic progression.

View Article and Find Full Text PDF

Background: Pre-deployment identification of soldiers at risk for long-term posttraumatic stress psychopathology after home coming is important to guide decisions about deployment. Early post-deployment identification can direct early interventions to those in need and thereby prevents the development of chronic psychopathology. Both hold significant public health benefits given large numbers of deployed soldiers, but has so far not been achieved.

View Article and Find Full Text PDF

Background: Predicting Posttraumatic Stress Disorder (PTSD) is a pre-requisite for targeted prevention. Current research has identified group-level risk-indicators, many of which (e.g.

View Article and Find Full Text PDF

Field of cancerization in the airway epithelium has been increasingly examined to understand early pathogenesis of non-small cell lung cancer. However, the extent of field of cancerization throughout the lung airways is unclear. Here we sought to determine the differential gene and microRNA expressions associated with field of cancerization in the peripheral airway epithelial cells of patients with lung adenocarcinoma.

View Article and Find Full Text PDF

Brain science is a frontier research area with great promise for understanding, preventing, and treating multiple diseases affecting millions of patients. Its key task of reconstructing neuronal brain connectivity poses unique Big Data Analysis challenges distinct from those in clinical or "-omics" domains. Our goal is to understand the strengths and limitations of reconstruction algorithms, measure performance and its determinants, and ultimately enhance performance and applicability.

View Article and Find Full Text PDF

There is broad interest in predicting the clinical course of mental disorders from early, multimodal clinical and biological information. Current computational models, however, constitute a significant barrier to realizing this goal. The early identification of trauma survivors at risk of post-traumatic stress disorder (PTSD) is plausible given the disorder's salient onset and the abundance of putative biological and clinical risk indicators.

View Article and Find Full Text PDF

De-novo reverse-engineering of genome-scale regulatory networks is a fundamental problem of biological and translational research. One of the major obstacles in developing and evaluating approaches for de-novo gene network reconstruction is the absence of high-quality genome-scale gold-standard networks of direct regulatory interactions. To establish a foundation for assessing the accuracy of de-novo gene network reverse-engineering, we constructed high-quality genome-scale gold-standard networks of direct regulatory interactions in Saccharomyces cerevisiae that incorporate binding and gene knockout data.

View Article and Find Full Text PDF

The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect "multi-modal" data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown.

View Article and Find Full Text PDF

The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs).

View Article and Find Full Text PDF

Background: Oncogenic mechanisms in small-cell lung cancer remain poorly understood leaving this tumor with the worst prognosis among all lung cancers. Unlike other cancer types, sequencing genomic approaches have been of limited success in small-cell lung cancer, i.e.

View Article and Find Full Text PDF

Background: Recent advances in next-generation DNA sequencing enable rapid high-throughput quantitation of microbial community composition in human samples, opening up a new field of microbiomics. One of the promises of this field is linking abundances of microbial taxa to phenotypic and physiological states, which can inform development of new diagnostic, personalized medicine, and forensic modalities. Prior research has demonstrated the feasibility of applying machine learning methods to perform body site and subject classification with microbiomic data.

View Article and Find Full Text PDF

Psoriasis is a common chronic inflammatory disease of the skin. We sought to use bacterial community abundance data to assess the feasibility of developing multivariate molecular signatures for differentiation of cutaneous psoriatic lesions, clinically unaffected contralateral skin from psoriatic patients, and similar cutaneous loci in matched healthy control subjects. Using 16S rRNA high-throughput DNA sequencing, we assayed the cutaneous microbiome for 51 such matched specimen triplets including subjects of both genders, different age groups, ethnicities and multiple body sites.

View Article and Find Full Text PDF

Algorithms for Markov boundary discovery from data constitute an important recent development in machine learning, primarily because they offer a principled solution to the variable/feature selection problem and give insight on local causal structure. Over the last decade many sound algorithms have been proposed to identify a single Markov boundary of the response variable. Even though faithful distributions and, more broadly, distributions that satisfy the intersection property always have a single Markov boundary, other distributions/data sets may have multiple Markov boundaries of the response variable.

View Article and Find Full Text PDF

Gene expression is useful for identifying the molecular signature of a disease and for correlating a pharmacodynamic marker with the dose-dependent cellular responses to exposure of a drug. Gene expression offers utility to guide drug discovery by illustrating engagement of the desired cellular pathways/networks, as well as avoidance of acting on the toxicological pathways. Successful employment of gene-expression signatures in the later stages of drug development depends on their linkage to clinically meaningful phenotypic characteristics and requires a biologically meaningful mechanism combined with a stringent statistical rigor.

View Article and Find Full Text PDF

Background: The discovery of molecular pathways is a challenging problem and its solution relies on the identification of causal molecular interactions in genomics data. Causal molecular interactions can be discovered using randomized experiments; however such experiments are often costly, infeasible, or unethical. Fortunately, algorithms that infer causal interactions from observational data have been in development for decades, predominantly in the quantitative sciences, and many of them have recently been applied to genomics data.

View Article and Find Full Text PDF

We have developed a mouse model of atherosclerotic plaque regression in which an atherosclerotic aortic arch from a hyperlipidemic donor is transplanted into a normolipidemic recipient, resulting in rapid elimination of cholesterol and monocyte-derived macrophage cells (CD68+) from transplanted vessel walls. To gain a comprehensive view of the differences in gene expression patterns in macrophages associated with regressing compared with progressing atherosclerotic plaque, we compared mRNA expression patterns in CD68+ macrophages extracted from plaque in aortic aches transplanted into normolipidemic or into hyperlipidemic recipients. In CD68+ cells from regressing plaque we observed that genes associated with the contractile apparatus responsible for cellular movement (e.

View Article and Find Full Text PDF

Background: The promise of modern personalized medicine is to use molecular and clinical information to better diagnose, manage, and treat disease, on an individual patient basis. These functions are predominantly enabled by molecular signatures, which are computational models for predicting phenotypes and other responses of interest from high-throughput assay data. Data-analytics is a central component of molecular signature development and can jeopardize the entire process if conducted incorrectly.

View Article and Find Full Text PDF

Background: GWAS owe their popularity to the expectation that they will make a major impact on diagnosis, prognosis and management of disease by uncovering genetics underlying clinical phenotypes. The dominant paradigm in GWAS data analysis so far consists of extensive reliance on methods that emphasize contribution of individual SNPs to statistical association with phenotypes. Multivariate methods, however, can extract more information by considering associations of multiple SNPs simultaneously.

View Article and Find Full Text PDF

Background: Pathway databases are becoming increasingly important and almost omnipresent in most types of biological and translational research. However, little is known about the quality and completeness of pathways stored in these databases. The present study conducts a comprehensive assessment of transcriptional regulatory pathways in humans for seven well-studied transcription factors: MYC, NOTCH1, BCL6, TP53, AR, STAT1, and RELA.

View Article and Find Full Text PDF

Background: A recent study reported that gene expression profiles from peripheral blood samples of healthy subjects prior to viral inoculation were indistinguishable from profiles of subjects who received viral challenge but remained asymptomatic and uninfected. If true, this implies that the host immune response does not have a molecular signature. Given the high sensitivity of microarray technology, we were intrigued by this result and hypothesize that it was an artifact of data analysis.

View Article and Find Full Text PDF

De-novo reverse-engineering of genome-scale regulatory networks is an increasingly important objective for biological and translational research. While many methods have been recently developed for this task, their absolute and relative performance remains poorly understood. The present study conducts a rigorous performance assessment of 32 computational methods/variants for de-novo reverse-engineering of genome-scale regulatory networks by benchmarking these methods in 15 high-quality datasets and gold-standards of experimentally verified mechanistic knowledge.

View Article and Find Full Text PDF

It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL.

View Article and Find Full Text PDF

Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the most important translational and basic science developments enabled by recent high-throughput molecular assays. A perplexing phenomenon that characterizes high-throughput data analysis is the ubiquitous multiplicity of molecular signatures.

View Article and Find Full Text PDF