Publications by authors named "Alexander Sprafke"

Optimal light absorption is decisive in obtaining high-efficiency solar cells. An established, if not to say the established, approach is to texture the interface of the light-absorbing layer with a suitable microstructure. However, structuring the light-absorbing layer is detrimental concerning its electrical properties due to an increased surface recombination rate (owing to enlarged surface area and surface defects) caused by the direct patterning process itself.

View Article and Find Full Text PDF

We study the light-trapping properties of surface textures generated by a bottom-up approach, which utilizes monolayers of densely deposited nanospheres as a template. We demonstrate that just allowing placement disorder in monolayers from identical nanospheres can already lead to a significant boost in light-trapping capabilities. Further absorption enhancement can be obtained by involving an additional nanosphere size species.

View Article and Find Full Text PDF

This feature issue highlights contributions from authors who presented their research at the OSA Light, Energy and the Environment Congress, held in Leipzig, Germany from November 14 to 17, 2016.

View Article and Find Full Text PDF

The feature issue highlights contributions from authors who presented their research at the OSA Light, Energy and the Environment Congress, held in Suzhou, China from 2 to 5 November, 2015.

View Article and Find Full Text PDF

Arrays of differently sized disk shaped gold nanoantennas are prepared on glass, which show localized surface plasmon resonance and Rayleigh anomalies in the near infrared and telecom range between 1000 and 1500 nm wavelength. The spectral position of these grating resonances depends critically on the period of the array and the size of the nanoantennas. When PbS quantum dots embedded in PMMA surround the nanoantennas, an up to four fold enhancement of the photoluminescence is observed at the grating resonances due to the constructive diffractive feedback among neighboring antennas.

View Article and Find Full Text PDF

Highly efficient volume phase gratings have been fabricated in low-iron soda lime glass using femtosecond (fs) laser pulses with 1030 nm wavelength and 270 fs pulse duration. Optical simulations based on rigorous coupled-wave analysis theory were performed to determine optimal grating parameters and designs for the application of the gratings for light management in solar modules, suggesting a very effective blazed-like design. Several of such blazed phase gratings have been fabricated and analyzed by measuring their diffraction efficiencies into first and higher orders.

View Article and Find Full Text PDF

The influence of different black silicon (b-Si) front side textures prepared by inductively coupled reactive ion etching (ICP-RIE) on the performance of back-contacted back silicon heterojunction (BCB-SHJ) solar cells is investigated in detail regarding their optical performance, black silicon surface passivation and internal quantum efficiency. Under optimized conditions the effective minority carrier lifetime measured on black silicon surfaces passivated with Al(2)O(3) can be higher than lifetimes measured for the SiO(2)/SiN(x) passivation stack used in the reference cells with standard KOH textures. However, to outperform the electrical current of silicon back-contact cells, the black silicon back-contact cell process needs to be optimized with aspect to chemical and thermal stability of the used dielectric layer combination on the cell.

View Article and Find Full Text PDF

The origin of the photocurrent enhancement and the overpotential reduction in solar water splitting employing nanostructured silicon is still a matter of debate. A set of tapered Si nanowires (SiNWs) has been designed for clarifying the impact of nanostructured Si on the hydrogen evolution reaction (HER) while precisely tailoring several interference factors such as surface area, light absorption and surface defect density. We find that defect passivation by KOH achieved by tapering is much more beneficial than the optical gain.

View Article and Find Full Text PDF

3D photonic crystals, such as opals, have been shown to have a high potential to increase the efficiency of solar cells by enabling advanced light management concepts. However, methods which comply with the demands of the photovoltaic industry for integration of these structures, i. e.

View Article and Find Full Text PDF