Publications by authors named "Alexander Smirnov"

Efficient second harmonic generation and broad-band photoluminescence from deeply subwavelength and nontoxic nanoparticles is essential for nanophotonic applications. Here, we explore nonlinear optical response from mesoporous Si/SiO, SiO, and Si nanoparticles, considering various fabrication and treatment procedures. We show that thermal annealing (including femtosecond laser treatment) of mesoporous Si/SiO nanoparticles provides the transformation of Si phase from amorphous to crystalline, enhancing the second harmonic and nonlinear photoluminescent response.

View Article and Find Full Text PDF

Introduction: The process of forming selenium nanoparticles with various shapes and structures through laser ablation and fragmentation in various solvents has been explored.

Methods: Laser ablation and laser fragmentation techniques were employed using nanosecond Nd:YAG second harmonic laser irradiation in 9 different working fluids, including water. The characteristics of the resulting nanoparticles were assessed using transmission electron microscopy (TEM), dynamic light scattering (DLS), spectroscopy, and X-ray diffraction (XRD) methods.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has underscored the necessity for functional transgenic animal models for testing. Mouse lines with overexpression of the human receptor ACE2 serve as the common animal model to study COVID-19 infection. Overexpression of ACE2 under a strong ubiquitous promoter facilitates convenient and sensitive testing of COVID-19 pathology.

View Article and Find Full Text PDF
Article Synopsis
  • The unique chemical properties of lanthanide compounds, particularly in their less common +2 oxidation state, lead to significant applications, but their molecular characteristics, especially for compounds like europium dihalides, remain underexplored.
  • Highly accurate calculations of the molecular structures, vibrational spectra, and atomisation energies of europium dihalides (EuX) using advanced computational methods reveal that these compounds are non-linear with varying bond angles and notable differences in bond strength compared to their monohalide counterparts.
  • The study evaluates the accuracy of using a pseudopotential approximation for europium's 4f electrons, showing that neglecting these electrons can result in substantial errors in molecular properties, emphasizing the importance of their explicit treatment for precise results
View Article and Find Full Text PDF

Photochemical transformations of small molecules, such as -substituted benzaldehydes, in the absence of a photocatalyst are significantly underexplored and may reveal unexpected outcomes. In the present paper, we showed that 2-(2-formylphenoxy)acetic acid and its esters undergo photocyclization into chromanone and benzofuranone derivatives under 365 nm irradiation. The reaction occurs exclusively in dimethyl sulfoxide and can be used to efficiently obtain hydroxychromanones in good yields (27-91%).

View Article and Find Full Text PDF

The COVID-19 pandemic has uncovered the high genetic variability of the SARS-CoV-2 virus and its ability to evade the immune responses that were induced by earlier viral variants. Only a few monoclonal antibodies that have been reported to date are capable of neutralizing a broad spectrum of SARS-CoV-2 variants. Here, we report the isolation of a new broadly neutralizing human monoclonal antibody, iC1.

View Article and Find Full Text PDF

We compute the potential-photon contributions to the classical relativistic scattering angle of two charged nonspinning bodies in electrodynamics through fifth order in the coupling. We use the scattering amplitudes framework, effective field theory, and multiloop integration techniques based on integration by parts and differential equations. At fifth order, the result is expressed in terms of cyclotomic polylogarithms.

View Article and Find Full Text PDF

Quantum cryptography revolutionizes secure information transfer, providing defense against both quantum and classical computational attacks. The primary challenge in extending the reach of quantum communication comes from the exponential decay of signals over long distances. We meet this challenge by experimentally realizing the Quantum-Protected Control-Based Key Distribution (QCKD) protocol, utilizing physical control over signal losses.

View Article and Find Full Text PDF

Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra.

View Article and Find Full Text PDF

This study addresses the pressing issues of energy production and consumption, in line with global sustainable development goals. Focusing on the potential of alcohols as "green" alternatives to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary mixtures at 303.

View Article and Find Full Text PDF

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag.

View Article and Find Full Text PDF

Cohen syndrome is an autosomal recessive disorder caused by () gene mutations. This syndrome is significantly underdiagnosed and is characterized by intellectual disability, microcephaly, autistic symptoms, hypotension, myopia, retinal dystrophy, neutropenia, and obesity. VPS13B regulates intracellular membrane transport and supports the Golgi apparatus structure, which is critical for neuron formation.

View Article and Find Full Text PDF

2-Allyloxybenzaldehydes undergo [2 + 1] cycloadditions under 365 nm LED irradiation to form the corresponding chroman-fused cyclopropanols. The reaction proceeds easily without any catalysts or additives in dimethyl sulfoxide.

View Article and Find Full Text PDF

Aerosols have implications to climate and biogeochemical cycles in the global oceans. At sites under indirect influence of dust emitted by the Patagonian semi-desert, a debate exists on the potential fertilization effects of iron enriched aerossol. Considering this subject we conducted measurements of aerosols optical properties using a Microtops II sun photometer to access aerosol size distributions and other intrinsic properties oversea from Atlantic Southern mid-latitudes to Antarctica.

View Article and Find Full Text PDF

Accurate description of electronic excited states of high-spin molecular species is a yet unsolved problem in modern electronic structure theory. A composite computational scheme developed in the present work contributes to solving this task for a challenging case of lanthanide-containing molecules. In the scheme, the highest-spin states whose wavefunctions are dominated by a single Slater determinant are described at the single-reference (SR) CCSD(T) level, whereas the lower-spin states, being inherently multiconfigurational in their nature, are treated with multireference (MR) methods, MRCI and/or CASPT2.

View Article and Find Full Text PDF

We employed the selective-area-epitaxy technique using metalorganic chemical vapor deposition to fabricate and study samples of semiconductor heterostructures that incorporate highly strained InGaAs quantum wells (980-990 nm emission wavelength). Selective area epitaxy of InGaAs quantum wells was performed on templates that had a patterned periodic structure consisting of a window (where epitaxial growth occurred) and a passive mask (where epitaxial growth was suppressed), each with a width of 100 µm for every element. Additionally, a selectively grown potential barrier layer was included, which was characterized by an almost parabolic curvature profile of the surface.

View Article and Find Full Text PDF

We have shown the opportunity to use the unique inhomogeneities of the internal structure of an optical fiber waveguide for remote authentication of users or an optic fiber line. Optical time domain reflectometry (OTDR) is demonstrated to be applicable to observing unclonable backscattered signal patterns at distances of tens of kilometers. The physical nature of the detected patterns was explained, and their characteristic spatial periods were investigated.

View Article and Find Full Text PDF

In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.

View Article and Find Full Text PDF

In this work, we showed that the well-known NanoLuc luciferase can act as a fluorogen activating protein for various arylidene-imidazolones structurally similar to the Kaede protein chromophore. We showed that such compounds can be used as fluorescent sensors for this protein and can also be used in pairs with it in fluorescent microscopy as a genetically encoded tag.

View Article and Find Full Text PDF
Article Synopsis
  • Single crystals of 2-methylbenzimidazolium perchlorate were synthesized for the first time using a slow evaporation method involving 2-methylbenzimidazole and perchloric acid.
  • The crystal structure was analyzed through single crystal X-ray diffraction (XRD), and further confirmed with powder XRD, while complementary techniques like polarized Raman spectroscopy and FTIR assessed molecular vibrations.
  • The study revealed an optical gap of ~3.9 eV and identified two phase transitions above room temperature, indicating changes in permittivity and conductivity similar to ionic liquids during melting.
View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) complexes are essential proteins found in genomes of all cellular organisms. Essential functions of these proteins, such as mitotic chromosome formation and sister chromatid cohesion, were discovered a long time ago. Recent advances in chromatin biology showed that SMC proteins are involved in many other genomic processes, acting as active motors extruding DNA, which leads to the formation of chromatin loops.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) are promising for new generation nanophotonics due to their unique optical properties. However, in contrast to direct bandgap TMD monolayers, bulk samples have an indirect bandgap that restricts their application as light emitters. On the other hand, the high refractive index of these materials allows for effective light trapping and the creation of high-Q resonators.

View Article and Find Full Text PDF

Recently, nanodiamonds with negatively charged luminescent color centers based on atoms of the fourth group (SiV, GeV) have been proposed for use as biocompatible luminescent markers. Further improvement of the functionality of such systems by expanding the frequencies of the emission can be achieved by the additional formation of luminescent tungsten complexes in the diamond matrix. This paper reports the creation of diamond matrices by a hot filament chemical vapor deposition method, containing combinations of luminescing Si-V and Ge-V color centers and tungsten complexes.

View Article and Find Full Text PDF

A new simple one-pot two-step protocol for the synthesis of 2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate from 2-(2-(benzylamino)benzylidene)malonate under the action of BF3·Et2O was developed. It was shown that the reaction proceeds through the formation of a stable iminium intermediate containing a difluoroboryl bridge in the dicarbonyl fragment of the molecule.

View Article and Find Full Text PDF