High-sensitivity uniaxial opto-mechanical accelerometers provide very accurate linear acceleration measurements. In addition, an array of at least six accelerometers allows the estimation of linear and angular accelerations and becomes a gyro-free inertial navigation system. In this paper, we analyze the performance of such systems considering opto-mechanical accelerometers with different sensitivities and bandwidths.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) spectroscopy is a popular technique for detecting chemicals in small quantities. Rough metallic surfaces with nanofeatures are some of the most widespread and commercially successful substrates for efficient SERS measurements. A rough metallic surface creates a high-density random distribution of so-called "hot spots" with local optical field enhancement causing Raman signal to increase.
View Article and Find Full Text PDFMonitoring and controlling the neutral and charged excitons (trions) in two-dimensional (2D) materials are essential for the development of high-performance devices. However, nanoscale control is challenging because of diffraction-limited spatial resolution of conventional far-field techniques. Here, we extend the classical tip-enhanced photoluminescence based on tip-substrate nanocavity to quantum regime and demonstrate controlled nano-optical imaging, namely, tip-enhanced quantum plasmonics.
View Article and Find Full Text PDFOptical spectroscopic imaging of biological systems has important applications in medical diagnosis, biochemistry, and image-guided surgery. Vibrational spectroscopy, such as Raman scattering, provides high chemical selectivity but is limited by weak signals and a large fluorescence background. Fluorescence imaging is often used by introducing specific dyes in biological systems to label different system parts and to increase the image contrast.
View Article and Find Full Text PDFTip-enhanced Raman scattering (TERS) is a promising optical and analytical technique for chemical imaging and sensing at single molecule resolution. In particular, TERS signals generated by a gap-mode configuration where a silver tip is coupled with a gold substrate can resolve a single-stranded DNA (ssDNA) molecule with a spatial resolution below 1 nm. To demonstrate the proof of subnanometer resolution, we show direct nucleic acid sequencing using TERS of a phage ssDNA (M13mp18).
View Article and Find Full Text PDFPalladium nanoparticles (Pd NPs) of three different morphologies viz., nanocubes with cetyltrimethylammonium bromide (CTAB), nanowires with polyvinyl alcohol (PVA) and Pd NPs with deoxyribonucleic acid (DNA) scaffolds were synthesized by UV-irradiation. Catalysis and surface enhanced Raman scattering (SERS) studies were done with the synthesized morphologically distinct Pd nanostructures for the very first time.
View Article and Find Full Text PDFThree morphologies of silver nanoparticles (Ag NPs) such as nanocubes, aggregated anisotropic Ag NPs, and nanospheres were prepared using polystyrene sulfonate (PSS) and citrate as stabilizing agents utilizing a simple wet-chemical and microwave heating route respectively. Ag nanocubes were prepared within one min through microwave heating whereas anisotropic Ag NPs and spherical Ag NPs via 5 and 30min of normal stirring at room temperature (RT) respectively. The shape effect of three different morphologies of Ag NPs were examined in catalysis reaction and in surface enhanced Raman scattering (SERS) studies.
View Article and Find Full Text PDFTwo-dimensional (2D) materials beyond graphene such as transition metal dichalcogenides (TMDs) have unique mechanical, optical and electronic properties with promising applications in flexible devices, catalysis and sensing. Optical imaging of TMDs using photoluminescence and Raman spectroscopy can reveal the effects of structure, strain, doping, edge states, and surface functionalization from materials to bioscience. However, Raman signals are inherently weak and so far have been limited in spatial resolution in TMDs to a few hundred nanometres which is much larger than the intrinsic scale of these effects.
View Article and Find Full Text PDFNanoscale real-time molecular sensing requires large signal enhancement, small background, short detection time and high spectral resolution. We demonstrate a new vibrational spectroscopic technique which satisfies all of these conditions. This time-resolved surface-enhanced coherent anti-Stokes Raman scattering (tr-SECARS) spectroscopy is used to detect hydrogen-bonded molecular complexes of pyridine with water in the near field of gold nanoparticles with large signal enhancement and a fraction of a second collection time.
View Article and Find Full Text PDFRapid voltage-controlled phase modulation of cw terahertz (THz) radiation is demonstrated. By transmitting an infrared beam through a lithium niobate phase modulator the phase of the THz radiation, which is generated by the photomixing of two infrared beams, can be directly modulated through a 2pi phase shift. The 100 kHz modulation rate that is demonstrated with this technique is approximately 3 orders of magnitude faster than what can be achieved by mechanical scanning.
View Article and Find Full Text PDFWe demonstrate and analyze data modulation of terahertz (THz) signals in the 1 Mbit/s range. THz pulse trains are phase and amplitude encoded with pseudorandom binary data, transmitted over a short distance, and detected. Different modulation formats are generated.
View Article and Find Full Text PDFWe use optical rectification and electro-optic sensing to generate and detect terahertz radiation, using individual and multilayered stacks of electro-optic polymer films. For comparable thickness, the polymer films are more efficient generators and detectors of terahertz radiation than ZnTe crystals.
View Article and Find Full Text PDF