Publications by authors named "Alexander Silkov"

: Adoptive cell therapy is the most promising approach for battling cancer, with T cell receptor-engineered T (TCR-T) cell therapy emerging as the most viable option for treating solid tumors. Current techniques for preparing TCR-T cell therapy provide a limited number of candidates TCRs, missing the comprehensive view of the repertoire, which may hinder the identification of the most effective TCRs. : Dendritic cells were primed with immunogenic peptides of the antigen of interest to expand antigen-specific CD8 T lymphocytes from peripheral blood.

View Article and Find Full Text PDF

The development of T cell receptor-engineered T cells (TCR-T) targeting intracellular antigens is a promising strategy for treating solid tumors; however, the mechanisms underlying their effectiveness remain poorly understood. In this study, we employed advanced techniques to investigate the functional state of T cells engineered with retroviral vectors to express a TCR specific for the NY-ESO-1 157-165 peptide in the HLA-A*02:01 context. Flow cytometry revealed a predominance of naïve T cells.

View Article and Find Full Text PDF
Article Synopsis
  • Adoptive cell therapy using TCR-engineered T-cells shows promise in targeting tumor cells, especially cancer-testis antigens in solid tumors, despite limited testing in this area compared to blood cancers.
  • The study introduced an innovative protocol for expanding MAGE-A3-specific T-cells and utilized advanced techniques like single-cell multi-omic analysis and lentiviral engineering to enhance T-cell effectiveness.
  • Results indicated a significant increase in MAGE-A3-specific T-cells, identification of a dominant T-cell receptor, and effective cytotoxic activity against MAGE-A3-positive tumors, highlighting the success of their methodology in generating potent anti-tumor T-cells.
View Article and Find Full Text PDF

TCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells.

View Article and Find Full Text PDF

Adoptive T-cell therapies tailored for the treatment of solid tumors encounter intricate challenges, necessitating the meticulous selection of specific target antigens and the engineering of highly specific T-cell receptors (TCRs). This study delves into the cytotoxicity and functional characteristics of in vitro-cultured T-lymphocytes, equipped with a TCR designed to precisely target the cancer-testis antigen NY-ESO-1. Flow cytometry analysis unveiled a notable increase in the population of cells expressing activation markers upon encountering the NY-ESO-1-positive tumor cell line, SK-Mel-37.

View Article and Find Full Text PDF

Background: A search for efficient graft rejection modulation techniques for the promotion of durable engraftment remains to be a matter of close study all over the world. Despite the variety of immunosuppressive drugs, the schemes currently used show a lack of selectivity and have a number of side effects. Here we investigated an approach for the induction of antigen-specific tolerance in a human "stimulator-responder" model , using dendritic cells (DCs) transfected with designed DNA constructs encoding the stimulator's major histocompatibility complex (MHC) epitopes.

View Article and Find Full Text PDF

Background: Nonspecific immunosuppressive therapy for graft rejection and graft-versus-host disease (GVHD) is often accompanied by severe side effects such as opportunistic infections and cancers. Several approaches have been developed to suppress transplantation reactions using tolerogenic cells, including induction of FoxP3 Tregs with antigen-loaded dendritic cells (DCs) and induction of CD4IL-10 cells with interleukin IL-10-producing DCs. Here, we assessed the effectiveness of both approaches in the suppression of graft rejection and GVHD.

View Article and Find Full Text PDF

Minimal residual disease remaining after resection of primary tumors can lead to tumor recurrence and metastasis, increasing mortality and morbidity rates among cancer patients. Thus, there is a need for new technologies for recognition and elimination of single cancer cells remaining in a patient's body after radiation therapy, chemotherapy, or surgical resection. Effector CD8 T cells, also commonly known as cytotoxic T lymphocytes (CTLs), play a key role in antitumor cellular immunity and, when properly activated, are able to effectively destroy tumor cells.

View Article and Find Full Text PDF

Tolerogenic dendritic cells (tolDCs) and T-regulatory cells (Tregs) are involved in maintaining tolerance to self-antigens and foreign antigens. The cells are used as therapeutic tools for inducing tolerance to transplanted organs or tissues. We investigated the possibility of inducing Tregs in splenocyte cultures using DCs transfected with a DNA construct encoding mouse interleukin-10 (DCpIL-10).

View Article and Find Full Text PDF

In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells.

View Article and Find Full Text PDF

The level of TNF receptors on various cells of immune system and its association with the gene polymorphism were investigated. Determining the levels of membrane-bound TNFα receptors on peripheral blood mononuclear cells (PBMCs) was performed by flow cytometry using BD QuantiBRITE calibration particles. Soluble TNF α receptor (sTNFRs) levels were determined by ELISA and genotyping was determined by PCR-RFLP.

View Article and Find Full Text PDF