This article is devoted to the investigation of the dielectric and repolarization properties of barium zirconate and barium titanate BaZrO₃/BaTiO₃ superlattices with a period of 13.322 nm on a monocrystal magnesium oxide (MgO) substrate. Synthesized superlattices demonstrated a ferroelectric phase transition at a temperature of approximately 393 °C, which is far higher than the Curie temperature of BaTiO₃ thin films and bulk samples.
View Article and Find Full Text PDFThe temperature of the transition to the polar state in ferroelectric composites, representing spherical ferroelectric inclusions embedded in a dielectric matrix, under a depolarizing field effect is investigated. This temperature is determined both in the absence and presence of screening effects of the depolarizing field of the bound charges of spontaneous polarization at the inclusions surface. The absence case shows that the Curie point shift is determined by the ratio of the Curie constant of the ferroelectric inclusion to the permittivity of the matrix.
View Article and Find Full Text PDF