Publications by authors named "Alexander Shlemov"

Article Synopsis
  • Ribosomally synthesized and post-translationally modified peptides (RiPPs) are significant natural products that include antibiotics and various bioactive compounds.
  • Current discovery methods for RiPPs are limited and ineffective at identifying unknown modifications in larger datasets.
  • MetaMiner is a new software tool that successfully identified 31 known and 7 unknown RiPPs from diverse microbial sources by analyzing millions of spectra from large genomic databases.
View Article and Find Full Text PDF

Motivation: Peptidic natural products (PNPs) are considered a promising compound class that has many applications in medicine. Recently developed mass spectrometry-based pipelines are transforming PNP discovery into a high-throughput technology. However, the current computational methods for PNP identification via database search of mass spectra are still in their infancy and could be substantially improved.

View Article and Find Full Text PDF

Natural products have traditionally been rich sources for drug discovery. In order to clear the road toward the discovery of unknown natural products, biologists need dereplication strategies that identify known ones. Here we report DEREPLICATOR+, an algorithm that improves on the previous approaches for identifying peptidic natural products, and extends them for identification of polyketides, terpenes, benzenoids, alkaloids, flavonoids, and other classes of natural products.

View Article and Find Full Text PDF

Peptidic natural products (PNPs) include many antibiotics and other bioactive compounds. While the recent launch of the Global Natural Products Social (GNPS) molecular networking infrastructure is transforming PNP discovery into a high-throughput technology, PNP identification algorithms are needed to realize the potential of the GNPS project. GNPS relies on the assumption that each connected component of a molecular network (representing related metabolites) illuminates the 'dark matter of metabolomics' as long as it contains a known metabolite present in a database.

View Article and Find Full Text PDF

Transforming error-prone immunosequencing datasets into Ab repertoires is a fundamental problem in immunogenomics, and a prerequisite for studies of immune responses. Although various repertoire reconstruction algorithms were released in the last 3 y, it remains unclear how to benchmark them and how to assess the accuracy of the reconstructed repertoires. We describe an accurate IgReC algorithm for constructing Ab repertoires from high-throughput immunosequencing datasets and a new framework for assessing the quality of reconstructed repertoires.

View Article and Find Full Text PDF