Ultrasound (US) has gained popularity as a guidance modality for percutaneous needle insertions because it is widely available and non-ionizing. However, coordinating scanning and needle insertion still requires significant experience. Current assistance solutions utilize optical or electromagnetic tracking (EMT) technology directly integrated into the US device or probe.
View Article and Find Full Text PDFSpectral imaging has the potential to become a key technique in interventional medicine as it unveils much richer optical information compared to conventional RBG (red, green, and blue)-based imaging. Thus allowing for high-resolution functional tissue analysis in real time. Its higher information density particularly shows promise for the development of powerful perfusion monitoring methods for clinical use.
View Article and Find Full Text PDFIntelligent systems in interventional healthcare depend on the reliable perception of the environment. In this context, photoacoustic tomography (PAT) has emerged as a non-invasive, functional imaging modality with great clinical potential. Current research focuses on converting the high-dimensional, not human-interpretable spectral data into the underlying functional information, specifically the blood oxygenation.
View Article and Find Full Text PDFPhotoacoustic imaging potentially allows for the real-time visualization of functional human tissue parameters such as oxygenation but is subject to a challenging underlying quantification problem. While in silico studies have revealed the great potential of deep learning (DL) methodology in solving this problem, the inherent lack of an efficient gold standard method for model training and validation remains a grand challenge. This work investigates whether DL can be leveraged to accurately and efficiently simulate photon propagation in biological tissue, enabling photoacoustic image synthesis.
View Article and Find Full Text PDFLaparoscopic surgery has evolved as a key technique for cancer diagnosis and therapy. While characterization of the tissue perfusion is crucial in various procedures, such as partial nephrectomy, doing so by means of visual inspection remains highly challenging. We developed a laparoscopic real-time multispectral imaging system featuring a compact and lightweight multispectral camera and the possibility to complement the conventional surgical view of the patient with functional information at a video rate of 25 Hz.
View Article and Find Full Text PDFStat Methods Med Res
February 2023
We consider the setting of an aggregate data meta-analysis of a continuous outcome of interest. When the distribution of the outcome is skewed, it is often the case that some primary studies report the sample mean and standard deviation of the outcome and other studies report the sample median along with the first and third quartiles and/or minimum and maximum values. To perform meta-analysis in this context, a number of approaches have recently been developed to impute the sample mean and standard deviation from studies reporting medians.
View Article and Find Full Text PDFPhotoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties with high spatial resolution. However, previous attempts to solve the optical inverse problem with supervised machine learning were hampered by the absence of labeled reference data. While this bottleneck has been tackled by simulating training data, the domain gap between real and simulated images remains an unsolved challenge.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
August 2022
Purpose: As human failure has been shown to be one primary cause for post-operative death, surgical training is of the utmost socioeconomic importance. In this context, the concept of surgical telestration has been introduced to enable experienced surgeons to efficiently and effectively mentor trainees in an intuitive way. While previous approaches to telestration have concentrated on overlaying drawings on surgical videos, we explore the augmented reality (AR) visualization of surgical hands to imitate the direct interaction with the situs.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
November 2022
Purpose: Fusing image information has become increasingly important for optimal diagnosis and treatment of the patient. Despite intensive research towards markerless registration approaches, fiducial marker-based methods remain the default choice for a wide range of applications in clinical practice. However, as especially non-invasive markers cannot be positioned reproducibly in the same pose on the patient, pre-interventional imaging has to be performed immediately before the intervention for fiducial marker-based registrations.
View Article and Find Full Text PDFSignificance: Optical and acoustic imaging techniques enable noninvasive visualisation of structural and functional properties of tissue. The quantification of measurements, however, remains challenging due to the inverse problems that must be solved. Emerging data-driven approaches are promising, but they rely heavily on the presence of high-quality simulations across a range of wavelengths due to the lack of ground truth knowledge of tissue acoustical and optical properties in realistic settings.
View Article and Find Full Text PDFPhotoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information. In this work, we present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images to facilitate image interpretability.
View Article and Find Full Text PDFBackground: Although digital and data-based technologies are widespread in various industries in the context of Industry 4.0, the use of smart connected devices in health care is still in its infancy. Innovative solutions for the medical environment are affected by difficult access to medical device data and high barriers to market entry because of proprietary systems.
View Article and Find Full Text PDFRecent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery.
View Article and Find Full Text PDFBackground: COVID-19 has been reported in over 40million people globally with variable clinical outcomes. In this systematic review and meta-analysis, we assessed demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19.
Methods: This systematic review was registered at PROSPERO under CRD42020177154.
Int J Comput Assist Radiol Surg
July 2021
Purpose: Photoacoustic tomography (PAT) is a novel imaging technique that can spatially resolve both morphological and functional tissue properties, such as vessel topology and tissue oxygenation. While this capacity makes PAT a promising modality for the diagnosis, treatment, and follow-up of various diseases, a current drawback is the limited field of view provided by the conventionally applied 2D probes.
Methods: In this paper, we present a novel approach to 3D reconstruction of PAT data (Tattoo tomography) that does not require an external tracking system and can smoothly be integrated into clinical workflows.
J Med Imaging (Bellingham)
July 2018
Accurate segmentations in medical images are the foundations for various clinical applications. Advances in machine learning-based techniques show great potential for automatic image segmentation, but these techniques usually require a huge amount of accurately annotated reference segmentations for training. The guiding hypothesis of this paper was that crowd-algorithm collaboration could evolve as a key technique in large-scale medical data annotation.
View Article and Find Full Text PDFPurpose: Electromagnetic (EM) tracking is a key technology in image-guided therapy. A new EM Micro Sensor was presented by Polhemus Inc.; it is the first to enable localization of medical instruments through their trackers.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2018
With the rapidly increasing interest in machine learning based solutions for automatic image annotation, the availability of reference annotations for algorithm training is one of the major bottlenecks in the field. Crowdsourcing has evolved as a valuable option for low-cost and large-scale data annotation; however, quality control remains a major issue which needs to be addressed. To our knowledge, we are the first to analyze the annotation process to improve crowd-sourced image segmentation.
View Article and Find Full Text PDFPurpose: Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions.
View Article and Find Full Text PDFPurpose: Percutaneous radiofrequency ablation (RFA) of thyroid nodules is an alternative to surgical resection that offers the benefits of minimal scars for the patient, lower complication rates, and shorter treatment times. Ultrasound (US) is the preferred modality for guiding these procedures. The needle is usually kept within the US scanning plane to ensure needle visibility.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2017
Purpose: Epidural and spinal needle insertions, as well as facet joint denervation and injections are widely performed procedures on the lumbar spine for delivering anesthesia and analgesia. Ultrasound (US)-based approaches have gained popularity for accurate needle placement, as they use a non-ionizing, inexpensive and accessible modality for guiding these procedures. However, due to the inherent difficulties in interpreting spinal US, they yet to become the clinical standard-of-care.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2017
Purpose: A thyroid-like gelatin model was used to determine potential superiority of a new navigation system for ultrasound (US)-guided electrode insertion called EchoTrack, featuring a US probe with an integrated electromagnetic field generator, in comparison with conventional US when performing radiofrequency ablation.
Methods: In order to compare 20 navigated ablations with 20 ablations under conventional US guidance, a thyroid-like gelatin model was used. In each group, 10 in-plane and 10 out-of-plane punctures were performed.